scholarly journals Protective Effect of Lactobacillus Plantarum P8 on the Growth Performance, Intestinal Health and Microbiota in Eimeria-infected Broilers

Author(s):  
Yang Wang ◽  
Xiaoguo Lv ◽  
Xuemin Li ◽  
Jinshan Zhao ◽  
Kai Zhang ◽  
...  

Abstract Background: Coccidiosis is one of the major parasitic diseases in the commercial broiler industry. Probiotics can protect poultry against Eimeria infection. However, the mechanisms are not fully known. Therefore, Lactobacillus plantarum P8 (P8) was used to investigate its anti-coccidial property and mechanism.Methods: Five hundred broilers were allocated to five treatments: control diet (NC), control diet + Eimeria infection (IC), control diet containing 1 × 107 cfu/g P8 + Eimeria infection (P8L), control diet containing 1 × 108 cfu/g P8 + Eimeria infection (P8H), and control diet + Eimeria infection + Diclazuril (DIC). At day 14, all treatments except NC were inoculated with sporulated oocysts. Results: Eimeria infection increased the mortality and oocysts shedding, and declined the growth performance as well as the intestinal barrier in Eimeria-treated broilers. On the contrary, dietary supplementation of low level P8, high level P8 and DIC decreased the mortality and oocysts shedding, but improved the growth performance and intestinal barrier. The impaired intestinal morphology in the IC group was also improved by P8H and DIC treatments. Besides, the elevated oxidative stress and pro-inflammation in Eimeria-infected broilers were reduced by P8L, P8H and DIC treatments. Metagenomic analysis indicated P8 altered the structure of the gut microbiota, and the alteration was more obvious at day 21 than day 42. Notably, IC also increased the abundances of Eimeriidae, Eimeria and Eimeria tenella at day 21, while P8L and DIC decreased the abundances. Correlation analysis revealed that bacteria in Eimeria-treated broilers positively correlated with the intestinal permeability, oxidative stress and inflammation, while bacteria in broilers receiving P8L and DIC negatively correlated with the aforementioned pathological indices. Functional prediction demonstrated that the metagenomes of Eimeria-infected broilers were involved in several diseases. But the metagenomes of P8L-treated broilers were involved in energy metabolism and replication repair. Conclusions: Dietary P8 supplementation inhibited oocyst shedding and improved the growth performance as well as the intestinal health of broilers infected with Eimeria, which was closely related to the regulation of gut microbiota. Moreover, the effects of P8 may be more effective in the early infection of coccidia.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yang Wang ◽  
Xiaoguo Lv ◽  
Xuemin Li ◽  
Jinshan Zhao ◽  
Kai Zhang ◽  
...  

Coccidiosis is one of the major parasitic diseases in the commercial broiler industry. Probiotics can protect poultry against Eimeria infection. However, the mechanisms are not fully known. Therefore, Lactobacillus plantarum P8 (P8) was used to investigate its anti-coccidial property and mechanism. Five hundred broilers were allocated to five treatments: control diet (NC), control diet + Eimeria infection (IC), control diet containing 1 × 107 cfu/g P8 + Eimeria infection (P8L), control diet containing 1 × 108 cfu/g P8 + Eimeria infection (P8H), and control diet + Eimeria infection + Diclazuril (DIC). At day 14, all treatments except NC were inoculated with sporulated oocysts. Results indicated that Eimeria infection increased the mortality and oocysts shedding, and declined the growth performance as well as the intestinal barrier in Eimeria-treated broilers. On the contrary, dietary supplementation of low level P8, high level P8 and DIC decreased the mortality and oocysts shedding, but improved the growth performance and intestinal barrier. The impaired intestinal morphology in the IC group was also improved by P8H and DIC treatments. Besides, the elevated oxidative stress and pro-inflammation in Eimeria-infected broilers were reduced by P8L, P8H, and DIC treatments. Metagenomic analysis indicated P8 altered the structure of the gut microbiota, and the alteration was more obvious at day 21 than day 42. Notably, IC also increased the abundances of Eimeriidae, Eimeria and Eimeria tenella at day 21, while P8L and DIC decreased the abundances. Correlation analysis revealed that bacteria in Eimeria-treated broilers positively correlated with the intestinal permeability, oxidative stress and inflammation, while bacteria in broilers receiving P8L and DIC negatively correlated with the aforementioned pathological indices. Functional prediction demonstrated that the metagenomes of Eimeria-infected broilers were involved in several diseases. But the metagenomes of P8L-treated broilers were involved in energy metabolism and replication repair. In conclusion, dietary P8 supplementation inhibited oocyst shedding and improved the growth performance as well as the intestinal health of broilers infected with Eimeria, which was closely related to the regulation of gut microbiota. Moreover, the effects of P8 may be more effective in the early infection of coccidia.


2021 ◽  
Author(s):  
Yuan Gao ◽  
Yujun Liu ◽  
Fenglian Ma ◽  
Mengying Sun ◽  
Yinglong Song ◽  
...  

The effect of L. plantarum Y44 administration on oxidative stress in Balb/C mice included the recovery of the gut microbiota and intestinal barrier function, influencing the glycerophospholipid metabolism, and activating Nrf-2/Keap-1 pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hui Han ◽  
Zemin Liu ◽  
Jie Yin ◽  
Jing Gao ◽  
Liuqin He ◽  
...  

Oxidative stress commonly occurs in pig production, which can severely damage the intestinal function of weaned piglets. This study was conducted to investigate the effects of D-galactose with different levels used to induce chronic oxidative stress on growth performance, intestinal morphology and gut microbiota in weaned piglets. The results showed that addition of 10 and 20 g/kg BW D-galactose reduced average daily gain and average daily feed intake from the first to the third week. 10 g/kg BW D-galactose increased the concentration of serum MDA at the second and third week. 10 g/kg BW D-galactose significantly influenced the jejunal and ileal expressions of GPx1, CAT1, and MnSOD. The results of 16S rRNA sequencing showed that compared with the control, 10 and 20 g/kg BW D-galactose significantly decreased the relative abundance of Tenericutes, Erysipelotrichia, Erysipelotrichales, and Erysipelotrichaceae, while increased the relative abundance of Negativicutes, Selenomonnadales, and Veillonellaceae. The results indicated that treatment with 10 g/kg BW/day D-galactose for 3 weeks could induce chronic oxidative stress, reduce the growth performance and alter gut microbiota in weaned piglets.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yongdi Zeng ◽  
Zirui Wang ◽  
Tiande Zou ◽  
Jun Chen ◽  
Guanhong Li ◽  
...  

This study aimed to investigate the effects of dietary bacteriophage supplementation on growth performance, intestinal morphology, barrier function, and intestinal microbiota of weaned piglets fed antibiotic-free diet. A total of 120 weaned piglets were allotted to four dietary treatments with five pens/treatment and six piglets/pen in a 21-d feeding trial. The control diet was supplemented with 25 mg/kg quinocetone and 11.25 mg/kg aureomycin in the basal diet, while the three treatment diets were supplemented with 200, 400, or 600 mg/kg bacteriophage in the basal diet, respectively. There was no difference for growth performance and all measured indices of serum and intestinal tissues between 200 mg/kg bacteriophage group and the control group with antibiotics (P > 0.05). More importantly, compared with the control diet, dietary 400 mg/kg bacteriophage inclusion increased average daily gain and average daily feed intake, and decreased feed/gain ratio and diarrhea incidence of weaned piglets (P < 0.05). Also, piglets fed 400 mg/kg bacteriophage had elevated villi height (VH) in jejunum and ileum, reduced crypt depth (CD) in jejunum and ileum, and elevated VH/CD ratio in duodenum, jejunum and ileum (P < 0.05). Compared to the control group, piglets fed 400 mg/kg bacteriophage had lower interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and higher interleukin-10 (IL-10) concentration in serum, and higher secretory immunoglobulin A (sIgA), intestinal trefoil factor (ITF), and tumor growth factor-alpha (TGF-α) content in the ileal mucosa (P < 0.05). Besides, dietary addition with 400 mg/kg bacteriophage decreased the D-lactate concentration and diamine oxidase (DAO) activity in serum, and increased the relative mRNA expression of ZO-1, Claudin-1, Occludin, TLR2, TLR4, and TLR9, as well as the relative protein expression of Occludin in the jejunum (P < 0.05). However, the growth performance and all analyzed parameters in serum and intestinal tissues were not further improved when piglets fed 600 vs. 400 mg/kg bacteriophage (P > 0.05). MiSeq sequencing analysis showed that bacteriophage regulated the microbial composition in caecum digesta, as indicated by higher observed_species, Chao1, and ACE richness indices, as well as changes in the relative abundance of Firmicutes, Bacteroidetes, and Tenericutes (P < 0.05). Collectively, 400 mg/kg bacteriophage can be used as an antibiotics alternative for promoting the growth of weaned piglets. The underlying mechanism is associated with a positive effect of bacteriophage on intestinal inflammation, intestinal barrier function and gut microbiota in weaned piglets.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yibing Wang ◽  
Yang Wang ◽  
Xiajing Lin ◽  
Zhongyong Gou ◽  
Qiuli Fan ◽  
...  

Butyrate has been reported to promote the performance and growth of chickens. The specific roles and efficacy of different sources of butyrate remained unclear. Thus, the present study aimed to investigate and compare the effects of Clostridium butyricum (CB), sodium butyrate (SB), and butyric acid glycerides (tributyrin, BAG) on the reproductive performance, egg quality, intestinal health, and offspring performance of yellow-feathered breeder hens. A total of 300 Lingnan yellow-feathered breeder hens were assigned to five treatment groups: control (CL), 1×108CFU/kg CB (CBL), 1×109CFU/kg CB (CBH), 500mg/kg SB, and 300mg/kg BAG. Results showed that the laying performance and egg quality were increased by CBL, CBH, and BAG. Both CB treatments increased the hatchability of fertilized eggs. Maternal supplementation with both levels of CB significantly elevated the growth performance of offspring. Treatment with CBL, CBH, SB, and BAG all improved the oviduct-related variables and reduced the plasmal antioxidant variables. The CBH, CBL, and BAG treatments also improved the intestinal morphology to different degrees. Jejunal contents of IL-6 were decreased by CBH and BAG, while those of IL-4, IL-6, IL-1β, and IgY were decreased by SB. Transcripts of nutrient transporters in jejunal mucosa were also upregulated by CBH, CBL, and SB treatments and expression of Bcl-2-associated X protein was decreased by CBL, CBH, and BAG. In cecal contents, CBL increased the abundance of Firmicutes and Bacillus, while CBH decreased the abundance of Proteobacteria. Also, the co-occurrence networks of intestinal microbes were regulated by CBH and BAG. In conclusion, dietary inclusion of CB and BAG improved the reproductive parameters, egg quality, and intestinal morphology of breeders. CB also influenced the hatching performance of breeders and growth performance of the offspring, while SB improved the oviduct-related variables. These beneficial effects may result from the regulation of cytokines, nutrient transporters, apoptosis, and gut microbiota; high-level CB had more obvious impact. Further study is needed to explore and understand the correlation between the altered gut microbiota induced by butyrate and the performance, egg quality, intestinal health, and also offspring performance.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 197-197
Author(s):  
Gabriela E Martinez Padilla ◽  
Ysenia Victoria Silva-Guillen ◽  
Kory Moran ◽  
Xi Lin ◽  
Jack Odle ◽  
...  

Abstract This study was conducted to evaluate the effects of using plasma protein (PP) as a highly digestible, functional protein source in nursery pig diets on growth performance and intestinal health. Pigs (n = 64; 6.53 ± 0.12 kg BW) weaned at 21 d of age were blocked by litter and BW and randomly assigned within blocks to 1 of 2 dietary treatments in a 35-d study. Four pigs were housed per pen, using a total of 16 pens (8 replicate pens per treatment). Treatments were: 1) control diet (without growth-promoting minerals or antibiotics) without PP, and 2) control diet with 4% of PP replacing SBM on a 1:1 basis. Diets were fed in 3 feeding phases (7, 14, and 14 days, respectively) and PP was included in all phases. Supplementation of PP tended (P = 0.07) to increase ADG (204 vs. 150 g/d) and improved (P = 0.02) gain:feed (812 vs 572 g/kg) during wk 2 only. Individual diarrhea scores (scale from 0=very hard to 6=watery diarrhea) determined using fecal loops changed over time (P < 0.001; 2.1, 2.4, 4.1 and 3.5 for d 1, 3, 7, and 14 respectively), but were not affected by PP. No differences were detected for intestinal morphology measured on d 35 in duodenum, jejunum and ileum. Cell proliferation using Ki-67 staining was increased by PP (86.6 vs. 72.2 positive cells) only in the ileum (P = 0.03). No differences in mucosal concentrations of IL-10, TNF-α, and IFN-γ in the duodenum, jejunum or ileum were detected. Number of eosinophils in blood decreased (14.1 vs. 34.8 cells/µL; P = 0.004), while red blood cell counts (5.9 vs 6.2 x 106 cells/µL; P = 0.09) and neutrophil counts (529 vs. 695 cells/µL; P = 0.07) tended to decrease with PP. Results suggest that PP was not effective in improving overall growth performance and had minimal effects on intestinal health of weanling pigs.


2021 ◽  
Author(s):  
Tong Wu ◽  
Xiaoya Wang ◽  
Hua Xiong ◽  
Zeyuan Deng ◽  
Xin Peng ◽  
...  

Tetrastigma hemsleyanum, a precious edible and medicinal plant in China, has attracted extensive research attention in recent years due to its highly traditional value for the treatment of various diseases....


2021 ◽  
Author(s):  
Shuai Liu ◽  
Yunxia Xiong ◽  
Jingping Chen ◽  
Hao Xiao ◽  
Qiwen Wu ◽  
...  

Abstract BACKGROUND: The beneficial function of fermented feed in livestock industry has been widely investigated. However, little is known about the effects of fermented feed on different weaned-day piglets. This study aimed to investigate the effects of fermented diet on the growth performance, intestinal function and microbiota of piglets weaned at age of 21 days and 28 days.RESULTS: The results found that weaning on d 21 significantly increased (P < 0.05) ADG, and ADFI (calculated based on wet weight and dry matter), while reduced (P < 0.05) F: G, the activities of trypsin and lipase of jejunum and villus height of ileum, compared with 28-d weaning. The protein levels of Occludin, Claudin-1, ZO-1 of ileum in the groups weaning on d 21 were less (P < 0.05) than the groups weaning on d 28. Moreover, dietary supplementation with fermented diet upregulated (P < 0.05) Occludin, Claudin-1, ZO-1 proteins of ileum, compared with the groups treated with control diet both weaning on d 21 and d 28. In addition, dietary supplementation with fermented diet decreased (P < 0.05) the relative abundance of Clostridia (class) and increased (P < 0.05) Bacteroidia (class) level of cecal microbiota, compared with the groups treated with control diet both weaning on d 21 and d 28. However, supplementation with fermented diet did not affect the concentrations of short-chain fatty acids in the cecum (P > 0.05).CONCLUSION: Therefore, our data suggest that feed digestibility is improved in piglets weaned at 21 days, but intestinal barrier function is weaker than in piglets weaned at 28 days. However, compared with feeding control diet, supplementation with fermented diet both improved feed conversion and intestinal barrier function of weaned piglets by modulating intestinal microbiota.


Author(s):  
Yuxia Chen ◽  
Yining Xie ◽  
Ruqing Zhong ◽  
Hui Han ◽  
Lei Liu ◽  
...  

Abstract The objective of this study was to investigate the effects of xylo-oligosaccharides (XOS) supplementation on growth performance, serum parameters, small intestinal morphology, intestinal mucosal integrity, and immune function in weaned piglets. A total of 240 weaned piglets with an average body weight (BW) of 8.82 ± 0.05 kg (28 d of age) were assigned randomly to 4 dietary treatments in a 28-d trial, including a control diet (CON), 3 diets with XOS supplementation at the concentration of 100, 500 and 1000 mg/kg (XOS100, XOS500, and XOS1000). There were 4 replicates per treatment with 15 pigs per pen. From d 1 to 14, there were no differences (P &gt; 0.05) in average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F) during the different treatments. The different doses of XOS showed a quadratic effect on BW on d 28, ADG and G:F d 1-28 of piglets (P &lt; 0.05). From d 15 to 28, ADG of pigs fed the XOS500 diet was higher (P &lt; 0.05) than pigs fed the CON diet. During the overall period (d 1 to 28), pigs fed the XOS500 diet had a higher BW, ADG and G:F than pigs fed the CON diet (P &lt; 0.05). In addition, compared with the CON group, the XOS500 group had significantly higher serum total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD) and catalase (CAT) levels and lower malondialdehyde (MDA) levels on d 14 and 28 (P &lt; 0.05). The serum immunoglobulin G (IgG) concentration in the XOS500 group was also significantly higher compared with the CON group on d 14 and 28 (P &lt;0.05). However, serum immunoglobulin A (IgA) and immunoglobulin M (IgM) were not affected by the dietary treatments. Supplementation of XOS500 to the feed significantly increased the villus height (VH) and villus height to crypt depth ratio (VH:CD) in the jejunum and ileum in comparison with the CON and XOS1000 group. Moreover, the XOS500 group significantly elevated the expression levels of Occludin and zonula occludens protein-1 (ZO-1) in the ileum compared to the CON group. The ileal interleukin (IL)-1β, IL-8 and interferon (IFN)-γ mRNA expression levels in the XOS100 and XOS500 group were markedly lower than in the CON group. In contrast, the ileal IL-10 mRNA expression levels were remarkably higher in the XOS500 than CON group. In conclusion, xylo-oligosaccharides have a beneficial effect on growth performance by improving serum antioxidant defense system, serum IgG, small intestinal structure and intestinal barrier function in weaned piglets.


Animals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 220 ◽  
Author(s):  
Mengmeng Xu ◽  
Long Che ◽  
Kaiguo Gao ◽  
Li Wang ◽  
Xuefen Yang ◽  
...  

Birth is one of the most important events of animal production agriculture, as newborns are abruptly forced to adapt to environmental and nutritional disruptions that can lead to oxidative damage and delay in growth. Taurine (Tau) is an important regulator of oxidative stress and possesses growth-enhancing properties. In the present study, we investigated the effects of dietary Tau supplementation in gilts during late gestation and lactation on the growth performance of piglets by assessing intestinal morphology and barrier function, and oxidative stress status. Sixteen gilts were randomly allocated to the Con (basal diet) and Tau (basal diet with 1% Tau) groups from 75 d of gestation to weaning. Maternal dietary Tau supplementation significantly increased weaning weight and average daily gain weight in piglets. Piglets in the Tau group had higher villus height and villus height-to-crypt depth ratio (VCR), ZO-1 protein expression, and secretory immunoglobulin A (sIgA) content in the jejunum. Meanwhile, Tau bebeficial affected the milk quality of gilts, as indicated by decreased malondialdehyde (MDA) concentration and increased total superoxide dismutase (T-SOD), total antioxidative capability (T-AOC), glutathione peroxidase (GPx), and catalase (CAT) activity. Furthermore, Tau supplementation increased T-SOD activity in plasma and SOD2 protein expression in the jejunum in the piglets. In conclusion, this study provides evidence that dietary Tau supplementation to gilts improves growth performance in piglets, owing to improved intestinal morphology and barrier function, as well as inhibition of oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document