scholarly journals Predator-Based Selection And The Impact of Edge Sympatry On Components of Coral Snake Mimicry

Author(s):  
Lauren Wilson ◽  
George Lonsdale ◽  
John David Curlis ◽  
Elizabeth Hunter ◽  
Christian L. Cox

Abstract Mimicry is a vivid example of how predator-driven selection can impact phenotypic diversity, which itself can be influenced by the presence (sympatry) or absence (allopatry) of a dangerous model. However, the impact of sympatry and allopatry on predation on mimicry systems at fine spatial scales (e.g., edge sympatry, allopatry) is not well understood. We used a clay replica study in a montane tropical site in Honduras to test the impact of edge sympatry on 1) overall attack rates, 2) the fitness benefit of mimetic coloration, 3) predation on specific mimetic signal components, and 4) temporal variation in predator-based selection on mimicry components. Unlike previous research, we found that mimetic phenotypes received significantly more attacks than cryptic replicas in edge sympatry, suggesting that mimetic phenotypes might not confer a fitness benefit in areas of edge sympatry. Additionally, we documented temporal variation in predator-based selection, as the impacts of allopatry on predatory attacks varied among years. Our results imply that the effect of sympatry and allopatry on predator-based selection in mimicry systems may be more complex than previously thought for species-rich assemblies of coral snakes and their mimics in the montane tropics.

2019 ◽  
Author(s):  
Pratibha Sanjenbam ◽  
Radhika Buddidathi ◽  
Radhika Venkatesan ◽  
P V Shivaprasad ◽  
Deepa Agashe

ABSTRACTThe ecology and distribution of many bacteria is strongly associated with specific eukaryotic hosts. However, the impact of such host association on bacterial ecology and evolution is not well understood. Bacteria from the genus Methylobacterium consume plant-derived methanol, and are some of the most abundant and widespread plant-associated bacteria. In addition, many of these species impact plant fitness. To determine the ecology and distribution of Methylobacterium in nature, we sampled bacteria from 36 distinct rice landraces, traditionally grown in geographically isolated locations in North-East (NE) India. These landraces have been selected for diverse phenotypic traits by local communities, and we expected that the divergent selection on hosts may have also generated divergence in associated Methylobacterium strains. We determined the ability of 91 distinct rice-associated Methylobacterium isolates to use a panel of carbon sources, finding substantial variability in carbon use profiles. Consistent with our expectation, across spatial scales this phenotypic variation was largely explained by host landrace identity rather than geographical factors or bacterial taxonomy. However, variation in carbon utilisation was not correlated with sugar exudates on leaf surfaces, suggesting that bacterial carbon use profiles do not directly determine bacterial colonization across landraces. Finally, experiments showed that at least some rice landraces gain an early growth advantage from their specific phyllosphere-colonizing Methylobacterium strains. Together, our results suggest that landrace-specific host-microbial relationships may contribute to spatial structure in rice-associated Methylobacterium in a natural ecosystem. In turn, association with specific bacteria may provide new ways to preserve and understand diversity in one of the most important food crops of the world.


2018 ◽  
Vol 613 ◽  
pp. A15 ◽  
Author(s):  
Patrick Simon ◽  
Stefan Hilbert

Galaxies are biased tracers of the matter density on cosmological scales. For future tests of galaxy models, we refine and assess a method to measure galaxy biasing as a function of physical scalekwith weak gravitational lensing. This method enables us to reconstruct the galaxy bias factorb(k) as well as the galaxy-matter correlationr(k) on spatial scales between 0.01hMpc−1≲k≲ 10hMpc−1for redshift-binned lens galaxies below redshiftz≲ 0.6. In the refinement, we account for an intrinsic alignment of source ellipticities, and we correct for the magnification bias of the lens galaxies, relevant for the galaxy-galaxy lensing signal, to improve the accuracy of the reconstructedr(k). For simulated data, the reconstructions achieve an accuracy of 3–7% (68% confidence level) over the abovek-range for a survey area and a typical depth of contemporary ground-based surveys. Realistically the accuracy is, however, probably reduced to about 10–15%, mainly by systematic uncertainties in the assumed intrinsic source alignment, the fiducial cosmology, and the redshift distributions of lens and source galaxies (in that order). Furthermore, our reconstruction technique employs physical templates forb(k) andr(k) that elucidate the impact of central galaxies and the halo-occupation statistics of satellite galaxies on the scale-dependence of galaxy bias, which we discuss in the paper. In a first demonstration, we apply this method to previous measurements in the Garching-Bonn Deep Survey and give a physical interpretation of the lens population.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 471
Author(s):  
Camino Gutiérrez-Corbo ◽  
Bárbara Domínguez-Asenjo ◽  
María Martínez-Valladares ◽  
Yolanda Pérez-Pertejo ◽  
Carlos García-Estrada ◽  
...  

Diseases caused by trypanosomatids (Sleeping sickness, Chagas disease, and leishmaniasis) are a serious public health concern in low-income endemic countries. These diseases are produced by single-celled parasites with a diploid genome (although aneuploidy is frequent) organized in pairs of non-condensable chromosomes. To explain the way they reproduce through the analysis of natural populations, the theory of strict clonal propagation of these microorganisms was taken as a rule at the beginning of the studies, since it partially justified their genomic stability. However, numerous experimental works provide evidence of sexual reproduction, thus explaining certain naturally occurring events that link the number of meiosis per mitosis and the frequency of mating. Recent techniques have demonstrated genetic exchange between individuals of the same species under laboratory conditions, as well as the expression of meiosis specific genes. The current debate focuses on the frequency of genomic recombination events and its impact on the natural parasite population structure. This paper reviews the results and techniques used to demonstrate the existence of sex in trypanosomatids, the inheritance of kinetoplast DNA (maxi- and minicircles), the impact of genetic exchange in these parasites, and how it can contribute to the phenotypic diversity of natural populations.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 253
Author(s):  
Mirosław Biczkowski ◽  
Aleksandra Jezierska-Thöle ◽  
Roman Rudnicki

The paper’s main aim is to assess the measures implemented within the Rural Development Program (RDP) 2007–2013 in Poland. This programme is dedicated to the diversification of business activities in rural areas and rural livelihood and, thus, the improvement of the multifunctionality of rural areas. The analysis covered two measures from Axis 3, Improvement of the quality of life in rural areas and diversification of rural economy: M311, diversification into non-agricultural activities; and M312, Establishment and development of micro-enterprise. The study and the discussion are presented from a geographical perspective and, in a broader context, take into account several conditions (natural, urban, agricultural and historical) and the spatial diversity of the allocation of European Union (EU) funds. Models of a policy of multifunctional rural development, implemented after accession to the EU, are presented. The research’s spatial scope covers Poland’s territory on two spatial scales: the system of regions (16 NUTS2 units) and poviats (314 LAU level 1 units). The analysis covers all the projects implemented in Poland under the two measures of Axis 3 of the RDP 2007–2013. A set of conditions was prepared for all LAU1 units, forming the background for assessing the impact of the EU funds on the development of non-agricultural activities. To determine the relationship between the RDP measures and the selected groups of conditions, a synthetic index and a correlation index are used. They are also used to determine the mutual relations between the two analyzed activities in terms of the spatial scales used. Access to the EU funds (RDP) has considerably enlarged the opportunities for accelerating agricultural modernisation and restructuration towards multifunctional development, as well as the opportunities for implementing new development and work methods in the countryside in Poland. The attractiveness of the two studied RDP measures varied across regions. The beneficiaries’ activity depended on the local potential (resources), culture and tradition of the region, and size and potential of the farm. In the areas where agriculture is deeply rooted, beneficiaries were more willing to engage in ventures tapping into the resources available in their farms. Thus, they create additional livelihood of income and workplaces for household members. In turn, the beneficiaries from the areas where farms are smaller and economically weaker often undertake activities related to setting up a new business (outside farming).


2021 ◽  
Author(s):  
Dante Föllmi ◽  
Jantiene Baartman ◽  
João Pedro Nunes ◽  
Akli Benali

<p><strong>Abstract</strong></p><p>Wildfires have become an increasing threat for Mediterranean ecosystems, due to increasing climate change induced wildfire activity and changing land management practices. Apart from the initial risk, fire can alter the soil in various ways depending on different fire severities and thus post-fire erosion processes are an important component in assessing wildfires’ negative effects. Recent post-fire erosion (modelling) studies often focus on a short time window and lack the attention for sediment dynamics at larger spatial scales. Yet, these large spatial and temporal scales are fundamental for a better understanding of catchment sediment dynamics and long-term destructive effects of multiple fires on post-fire erosion processes. In this study the landscape evolution model LAPSUS was used to simulate erosion and deposition in the 404 km<sup>2</sup> Águeda catchment in northern-central Portugal over a 41 year (1979-2020) timespan. To include variation in fire severity and its impact on the soil four burnt severity classes, represented by the difference Normalized Burn Ratio (dNBR), were parameterized. Although model calibration was difficult due to lack of spatial and temporal measured data, the results show that average post-fire net erosion rates were significantly higher in the wildfire scenarios (5.95 ton ha<sup>-1</sup> yr<sup>-1</sup>) compared to those of a non-wildfire scenario (0.58 ton ha<sup>-1</sup> yr<sup>-1</sup>). Furthermore, erosion values increased with a higher level of burnt severity and multiple fires increased the overall sediment build-up in the catchment, fostering an increase in background sediment yield. Simulated erosion patterns showed great spatial variability with large deposition and erosion rates inside streams. Due to this variability, it was difficult to identify land uses that were most sensitive for post-fire erosion, because some land-uses were located in more erosion-sensitive areas (e.g. streams, gullies) or were more affected by high burnt severity levels than others. Despite these limitations, LAPSUS performed well on addressing spatial sediment processes and has the ability to contribute to pre-fire management strategies. For instance, the percentage soil loss map (i.e. comparison of erosion and soil depth maps) could identify locations at risk.</p>


2016 ◽  
Vol 16 (8) ◽  
pp. 5075-5090 ◽  
Author(s):  
Robert E. Holz ◽  
Steven Platnick ◽  
Kerry Meyer ◽  
Mark Vaughan ◽  
Andrew Heidinger ◽  
...  

Abstract. Despite its importance as one of the key radiative properties that determines the impact of upper tropospheric clouds on the radiation balance, ice cloud optical thickness (IOT) has proven to be one of the more challenging properties to retrieve from space-based remote sensing measurements. In particular, optically thin upper tropospheric ice clouds (cirrus) have been especially challenging due to their tenuous nature, extensive spatial scales, and complex particle shapes and light-scattering characteristics. The lack of independent validation motivates the investigation presented in this paper, wherein systematic biases between MODIS Collection 5 (C5) and CALIOP Version 3 (V3) unconstrained retrievals of tenuous IOT (< 3) are examined using a month of collocated A-Train observations. An initial comparison revealed a factor of 2 bias between the MODIS and CALIOP IOT retrievals. This bias is investigated using an infrared (IR) radiative closure approach that compares both products with MODIS IR cirrus retrievals developed for this assessment. The analysis finds that both the MODIS C5 and the unconstrained CALIOP V3 retrievals are biased (high and low, respectively) relative to the IR IOT retrievals. Based on this finding, the MODIS and CALIOP algorithms are investigated with the goal of explaining and minimizing the biases relative to the IR. For MODIS we find that the assumed ice single-scattering properties used for the C5 retrievals are not consistent with the mean IR COT distribution. The C5 ice scattering database results in the asymmetry parameter (g) varying as a function of effective radius with mean values that are too large. The MODIS retrievals have been brought into agreement with the IR by adopting a new ice scattering model for Collection 6 (C6) consisting of a modified gamma distribution comprised of a single habit (severely roughened aggregated columns); the C6 ice cloud optical property models have a constant g ≈ 0.75 in the mid-visible spectrum, 5–15 % smaller than C5. For CALIOP, the assumed lidar ratio for unconstrained retrievals is fixed at 25 sr for the V3 data products. This value is found to be inconsistent with the constrained (predominantly nighttime) CALIOP retrievals. An experimental data set was produced using a modified lidar ratio of 32 sr for the unconstrained retrievals (an increase of 28 %), selected to provide consistency with the constrained V3 results. These modifications greatly improve the agreement with the IR and provide consistency between the MODIS and CALIOP products. Based on these results the recently released MODIS C6 optical products use the single-habit distribution given above, while the upcoming CALIOP V4 unconstrained algorithm will use higher lidar ratios for unconstrained retrievals.


2019 ◽  
Author(s):  
Brendan Byrne ◽  
Dylan B. A. Jones ◽  
Kimberly Strong ◽  
Saroja M. Polavarapu ◽  
Anna B. Harper ◽  
...  

Abstract. Interannual variations in temperature and precipitation impact the carbon balance of terrestrial ecosystems, leaving an imprint in atmospheric CO2. Quantifying the impact of climate anomalies on the net ecosystem exchange (NEE) of terrestrial ecosystems can provide a constraint to evaluate terrestrial biosphere models against, and may provide an emergent constraint on the response of terrestrial ecosystems to climate change. We investigate the spatial scales over which interannual variability in NEE can be constrained using atmospheric CO2 observations from the Greenhouse Gases Observing Satellite (GOSAT). NEE anomalies are calculated by performing a series of inversion analyses using the GEOS-Chem model to assimilate GOSAT observations. Monthly NEE anomalies are compared to proxies, variables which are associated with anomalies in the terrestrial carbon cycle, and to upscaled NEE estimates from FLUXCOM. Strong agreement is found in the timing of anomalies in the GOSAT flux inversions with soil temperature and FLUXCOM. Strong correlations are obtained (P  RNINO3.4) in the tropics on continental and larger scales, and in the northern extratropics on sub-continental scales during the summer (R2 ≥ 0.49). These results, in addition to a series of observing system simulation experiments that were conducted, provide evidence that GOSAT flux inversions can isolate anomalies in NEE on continental and larger scales. However, in both the tropics and northern extratropics, the agreement between the inversions and the proxies/FLUXCOM is sensitive to the flux inversion configuration. Our results suggest that regional scales are likely the minimum scales that can be resolved in the tropics using GOSAT observations, but obtaining robust NEE anomaly estimates on these scales may be difficult.


2018 ◽  
Vol 15 (13) ◽  
pp. 4245-4269 ◽  
Author(s):  
Rebecca J. Oliver ◽  
Lina M. Mercado ◽  
Stephen Sitch ◽  
David Simpson ◽  
Belinda E. Medlyn ◽  
...  

Abstract. The capacity of the terrestrial biosphere to sequester carbon and mitigate climate change is governed by the ability of vegetation to remove emissions of CO2 through photosynthesis. Tropospheric O3, a globally abundant and potent greenhouse gas, is, however, known to damage plants, causing reductions in primary productivity. Despite emission control policies across Europe, background concentrations of tropospheric O3 have risen significantly over the last decades due to hemispheric-scale increases in O3 and its precursors. Therefore, plants are exposed to increasing background concentrations, at levels currently causing chronic damage. Studying the impact of O3 on European vegetation at the regional scale is important for gaining greater understanding of the impact of O3 on the land carbon sink at large spatial scales. In this work we take a regional approach and update the JULES land surface model using new measurements specifically for European vegetation. Given the importance of stomatal conductance in determining the flux of O3 into plants, we implement an alternative stomatal closure parameterisation and account for diurnal variations in O3 concentration in our simulations. We conduct our analysis specifically for the European region to quantify the impact of the interactive effects of tropospheric O3 and CO2 on gross primary productivity (GPP) and land carbon storage across Europe. A factorial set of model experiments showed that tropospheric O3 can suppress terrestrial carbon uptake across Europe over the period 1901 to 2050. By 2050, simulated GPP was reduced by 4 to 9 % due to plant O3 damage and land carbon storage was reduced by 3 to 7 %. The combined physiological effects of elevated future CO2 (acting to reduce stomatal opening) and reductions in O3 concentrations resulted in reduced O3 damage in the future. This alleviation of O3 damage by CO2-induced stomatal closure was around 1 to 2 % for both land carbon and GPP, depending on plant sensitivity to O3. Reduced land carbon storage resulted from diminished soil carbon stocks consistent with the reduction in GPP. Regional variations are identified with larger impacts shown for temperate Europe (GPP reduced by 10 to 20 %) compared to boreal regions (GPP reduced by 2 to 8 %). These results highlight that O3 damage needs to be considered when predicting GPP and land carbon, and that the effects of O3 on plant physiology need to be considered in regional land carbon cycle assessments.


2019 ◽  
Vol 11 (22) ◽  
pp. 2603
Author(s):  
George Xian ◽  
Hua Shi ◽  
Cody Anderson ◽  
Zhuoting Wu

Medium spatial resolution satellite images are frequently used to characterize thematic land cover and a continuous field at both regional and global scales. However, high spatial resolution remote sensing data can provide details in landscape structures, especially in the urban environment. With upgrades to spatial resolution and spectral coverage for many satellite sensors, the impact of the signal-to-noise ratio (SNR) in characterizing a landscape with highly heterogeneous features at the sub-pixel level is still uncertain. This study used WorldView-3 (WV3) images as a basis to evaluate the impacts of SNR on mapping a fractional developed impervious surface area (ISA). The point spread function (PSF) from the Landsat 8 Operational Land Imager (OLI) was used to resample the WV3 images to three different resolutions: 10 m, 20 m, and 30 m. Noise was then added to the resampled WV3 images to simulate different fractional levels of OLI SNRs. Furthermore, regression tree algorithms were incorporated into these images to estimate the ISA at different spatial scales. The study results showed that the total areal estimate could be improved by about 1% and 0.4% at 10-m spatial resolutions in our two study areas when the SNR changes from half to twice that of the Landsat OLI SNR level. Such improvement is more obvious in the high imperviousness ranges. The root-mean-square-error of ISA estimates using images that have twice and two-thirds the SNRs of OLI varied consistently from high to low when spatial resolutions changed from 10 m to 20 m. The increase of SNR, however, did not improve the overall performance of ISA estimates at 30 m.


Author(s):  
Lauren Wilson ◽  
George Lonsdale ◽  
John David Curlis ◽  
Elizabeth A. Hunter ◽  
Christian L. Cox
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document