scholarly journals Simulation of Sugarcane Growth and Yield Under Optimized Subsurface Irrigation System

Author(s):  
M.H.J.P. Gunarathna ◽  
M.K.N. Kumari

Abstract The optimized subsurface irrigation system (OPSIS) is a newly developed subsurface irrigation system to irrigate upland crops. Although it is already evaluated for few crops using field experiments, further evaluation is required. Since field experiments are tedious, expensive, we need an alternative approach to evaluate the OPSIS. A well-calibrated and validated crop model is a fast-alternative option for developing and evaluating agronomic practices. Therefore, this study aimed to develop the modeling capabilities of APSIM to simulate the OPSIS. We conducted field experiments for three growing seasons (main crop and two ratoons), two planting seasons (spring and summer planting), and two separate crops to collect necessary data for calibration and validation processes. We scripted a new module named "OPSIS" to couple OPSIS to the APSIM engine. We parameterized, calibrated, and validated the APSIM to simulate the growth and yield of sugarcane with OPSIS. After firm parameterization and calibration, APSIM-Sugar can successfully simulate the growth and yield of sugarcane with OPSIS. However, the simulation of soil moisture dynamics and irrigation water use were not up to the standards. Although it gives quite reasonable results for growth and yield simulations of sugarcane, further studies are suggested to develop the simulation accuracy of soil water dynamics and irrigation water use through the OPSIS.

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 228
Author(s):  
Ikram Ullah ◽  
Hanping Mao ◽  
Ghulam Rasool ◽  
Hongyan Gao ◽  
Qaiser Javed ◽  
...  

This study was conducted to investigate the effects of various irrigation water (W) and nitrogen (N) levels on growth, root-shoot morphology, yield, and irrigation water use efficiency of greenhouse tomatoes in spring–summer and fall–winter. The experiment consisted of three irrigation water levels (W: 100% of crop evapotranspiration (ETc), 80%, and 60% of full irrigation) and three N application levels (N: 100%, 75%, and 50% of the standard nitrogen concentration in Hoagland’s solution treatments equivalent to 15, 11.25, 7.5 mM). All the growth parameters of tomato significantly decreased (p < 0.05) with the decrease in the amount of irrigation and nitrogen application. Results depicted that a slight decrease in irrigation and an increase in N supply improved average root diameter, total root length, and root surface area, while the interaction was observed non-significant at average diameter of roots. Compared to the control, W80 N100 was statistically non-significant in photosynthesis and stomatal conductance. The W80 N100 resulted in a yield decrease of 2.90% and 8.75% but increased irrigation water use efficiency (IWUE) by 21.40% and 14.06%. Among interactions, the reduction in a single factor at W80 N100 and W100 N75 compensated the growth and yield. Hence, W80 N100 was found to be optimal regarding yield and IWUE, with 80% of irrigation water and 15 mM of N fertilization for soilless tomato production in greenhouses.


Author(s):  
Recep Cakir

The article contains data obtained from evaluations related to irrigation water use efficiency (IWUE) and water use efficiency (WUE), for the main crops, irrigated at different stages of growth, on the basis of some findings obtained in the Research Institute in Kırklareli. Each of the experimental crops was sown and farmed following procedures applied by the farmers in the region, except of the irrigation applications which were based on the sensitivity of a certain crop to water shortage in the soil, during the specific growth stages. Similar procedures were applied and all the experimental treatments were irrigated at growth stages, as predicted in the research methodology, and water amounts required to fill the 0-90 cm soil depth to field capacity were implied. Evaluation data obtained from the field experiments with three major crops, grown on the non-coastal lands of Thrace Region showed, that the productivity of irrigation water, as well as water use efficiencies of all analysed crops, are growth stage controlled. The highest IWUE and WUE efficiencies of 0.87 and 0.92 kg da-1 m-3; and 1.08 kg da-1 m-3 and 0.81 kg da-1 m-3; were determined for wheat and sunflower crops, irrigated at booting and flowering stages, respectively. Each m3 of irrigation water, applied during the most sensitive fruit formation stage (Ff) of pumpkin crop, provided additionally 8.47 kg da-1 fruit yield, 8.09 fruit numbers and 0.28 kg da-1 seed yields, more than those of rainfed farming (R).


10.29007/qz1w ◽  
2018 ◽  
Author(s):  
Saul Arciniega ◽  
Jose A. Breña-Naranjo ◽  
Adrián Pedrozo-Acuña ◽  
Antonio Hernández-Espriú

Irrigation water use (IWU) or withdrawal is a key component for the water management of a region since it tends to exceed the crops consumptive water use, especially in water-stressed regions where groundwater is the main source of water. Nevertheless, temporal IWU information is missing in many irrigation areas. Remote sensing (RS) data is commonly used for crop water requirements estimations in areas with lack of data, however, IWU is more complex to approach since it also depends on water use efficiency, irrigation system type, irrigation scheduling, and water availability, among others. This work explores the use of remote sensing data (TRMM, MODIS) and land surface hydrological products (GLDAS 2 and MERRA 2) to obtain insights about the space-time annual IWU patterns across croplands located within Mexico’s northeast region. Reported IWU in three irrigation districts (Don Martín, Región Lagunera and Bajo Río Bravo) was used to obtain a functional model using satellite data derived. Results suggest strong relationship between reported IWU with soil moisture content from GLDAS and the maximum annual EVI from MODIS, where a potential regression shown statistical correlations of 0.83 and 0.77, respectively.


Author(s):  
R.J. Paton ◽  
P.B. Greenwood

Pasture production and irrigation water-use efficiencies were measured for 3 irrigation regimes on a Mackenzie shallow, stony soil in the Mackenzie Basin near Omarama. Irrigating at 25% was the most efficient of three irrigation frequencies maintained over the 198 1-1986 period (irrigated at O%, 25%, and 50% plant-available water capacity). Less frequent irrigation resulted in lower pasture yields due to increased water stress, while more frequent watering resulted in a 55% drainage loss of irrigation water below the root zone. At 1.16 t DIvUha per irrigation, the increase in pasture yield with irrigation at 25% was higher than most increases achieved in existing irrigation schemes in Central Otago and mid Canterbury. Over 6 years, this treatment required 4-7 irrigations annually and, on average, produced 6.0 t DM/ha more than did dryland pasture. The water-use efficiencies achieved in the border-strip irrigation system used were generally greater than expected for highly permeable stony soils where large drainage losses of irrigation water below the root zone are common. This was the result of reduced soil water transmission rates after compaction by heavy machinery during border strip* preparation. That effect of compaction was persistent, and had not diminished 9 years after initial pasture and irrigation development, as structural improvement of this soil is slow, even under irrigation. Keywords: high country pasture, irrigation, Mackenzie Basin


2005 ◽  
Vol 45 (12) ◽  
pp. 1539 ◽  
Author(s):  
D. J. Watson ◽  
G. Drysdale

The north-east region of Victoria is an important water-harvesting catchment for gravity-fed irrigators downstream of Lake Mulwala. Dairy farmers are significant users of irrigation water in north-east Victoria but little was known about their irrigation practices and attitudes. A survey undertaken in 2000 collected data on irrigation practices and attitudes from 92% of the irrigating dairy farmers in the region. It found diversity in many aspects of irrigation amongst the region’s irrigated dairy farms, ranging from the proportion of the farm irrigated to the irrigation system used, and identified areas where improvements to irrigation practices could be made. More than 8 different irrigation systems were used in the region, and flood irrigation was the most commonly used. However, a large proportion (37%) of flood irrigators were contemplating changing to spray irrigation, mostly to long lateral hand move sprinkler irrigation, in an effort to improve water use efficiency. More than 50% of respondents did not meter irrigation water use, and 83% pumped water directly from rivers or creeks, with dams and dragline holes the next most common sources. Irrigation scheduling (when to start irrigating and the frequency of irrigation thereafter) and the amount of water to apply were generally based on knowledge and experience rather than on soil moisture monitoring equipment or use of evaporation rates. Most survey respondents recognised that their irrigation practices could improve and said that they would be interested in information to help them make more informed decisions about irrigation practices.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1467 ◽  
Author(s):  
Zhenhua Wang ◽  
Qingyong Bian ◽  
Jinzhu Zhang ◽  
Bo Zhou

Studying water–fertilizer coupling effects in a drip irrigation system is critical for sustainable agricultural development in arid areas, such as that of Xinjiang in China, to find out the optimized water and fertilizer management. Therefore, a two-year field experiment was conducted to find out how the combination of three levels of irrigation quotas and three levels of fertilizer amounts would affect the physiological and growth indexes of jujube, as well as ascertain the differences between drip irrigation and flood irrigation. The results showed that the interacted and coupled effects of irrigation and fertilization influenced most of the physiological indicators and growth indexes. On the other hand, the physiological and growth indexes were increased after transferring flood irrigation to drip irrigation, as the maximum chlorophyll content (CC) and photosynthetic nitrogen use efficiency (PNUE) values increased on average by 6.00%, and 11.39% in 2016, and 1.47% and 6.83% in 2017, respectively. Undoubtedly, inappropriate water and fertilizer management had negative impacts on jujube growth and yield. Based on the treatments and results in this paper, low fertilizer and moderate irrigation would be the best choice. The crop yield, irrigation water use efficiency (iWUE), and fertilizer partial productivity (PFP) increased by 6.77%, 29.48%, and 193.62% in 2016, and similar increments were also found in 2017 of 6.17%, 78.72%, and 133.06%, respectively. This indicated that fertilizer efficiency was promoted along with water use, and in turn, the water amounts were adjusted by the amount of fertilizer that was applied. Based on a comprehensive consideration of the physiological and growth indexes, a mathematical model was established, and the optimized irrigation and fertilizer amounts of jujube in northern Xinjiang area were found to be 815 mm and 400 kg ha−1 (with N–P2O5–K2O proportioned at 2–1–1.5). The results that were obtained in this paper would provide theoretical reference to the sustainable development of jujube plantation using drip irrigation in the arid areas.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sushil K. Himanshu ◽  
Srinivasulu Ale ◽  
James P. Bordovsky ◽  
JungJin Kim ◽  
Sayantan Samanta ◽  
...  

AbstractDetermining optimum irrigation termination periods for cotton (Gossypium hirsutum L.) is crucial for efficient utilization and conservation of finite groundwater resources of the Ogallala Aquifer in the Texas High Plains (THP) region. The goal of this study was to suggest optimum irrigation termination periods for different Evapotranspiration (ET) replacement-based irrigation strategies to optimize cotton yield and irrigation water use efficiency (IWUE) using the CROPGRO-Cotton model. We re-evaluated a previously evaluated CROPGRO-Cotton model using updated yield and in-season physiological data from 2017 to 2019 growing seasons from an IWUE experiment at Halfway, TX. The re-evaluated model was then used to study the effects of combinations of irrigation termination periods (between August 15 and September 30) and deficit/excess irrigation strategies (55%-115% ET-replacement) under dry, normal and wet years using weather data from 1978 to 2019. The 85% ET-replacement strategy was found ideal for optimizing irrigation water use and cotton yield, and the optimum irrigation termination period for this strategy was found to be the first week of September during dry and normal years, and the last week of August during wet years. Irrigation termination periods suggested in this study are useful for optimizing cotton production and IWUE under different levels of irrigation water availability.


2012 ◽  
Vol 22 (4) ◽  
pp. 484-492 ◽  
Author(s):  
Xinhua Yin ◽  
Lynn E. Long ◽  
Xiao-Lan Huang ◽  
Ngowari Jaja ◽  
Jinhe Bai ◽  
...  

A field trial was conducted on a Cherryhill silt loam soil at The Dalles, OR, from 2006 to 2008. The impacts of switching from the traditional micro sprinkler irrigation (MS) to double-lateral drip irrigation (DD) and from no groundcover with herbicide control of weeds (NC) to in-row wheat (Triticum aestivum) straw mulching (ST) were evaluated in a split-plot design with four replicates. Irrigation water use, mineral nutrition, and productivity of ‘Lapins’ sweet cherry (Prunus avium) on ‘Mazzard’ rootstock (P. avium) and soil quality were measured on a plot basis. DD reduced irrigation water consumption by 47.6% to 58.2% compared with MS. Straw mulch lowered irrigation water use by 9.7% relative to NC. Total fruit yield and fruit quality of firmness, size, and sugar at harvest were similar for the irrigation treatments. Straw mulch increased fruit size by 0.6 mm on average relative to NC, which could result in increased grower profitability. The DD system enhanced percentage of marketable fruit by 8.6% relative to MS. Leaf phosphorus (P), boron (B), zinc (Zn), and iron (Fe) concentrations were reduced with DD over MS; consequently, more P, B, Zn, and Fe fertilizers might be needed under DD. Straw mulch markedly decreased the populations of flagellates and amoebae but slightly increased the population of ciliates. Straw mulch resulted in a soil microbial community with remarkably less protozoa. Overall, DD is a viable alternate irrigation system for producing sweet cherry orchards with limited water resources for irrigation. Switching from NC to ST could lower irrigation water use, reduce herbicide runoff, and protect soil from erosion.


Various efforts to improve the welfare of the community have become the priority of government programs currently, especially in providing food by encouraging the development of the irrigation sector. The decline in water resources both in terms of quantity and quality also make a triggers the problem of water distribution when there is an imbalance between demand and supply. The desire among farmers to obtain water immediately may cause problems in how to distribute water fairly and equally. Sempor Irrigation System (5.888 ha) also deal with water distribution problems especially during the dry season. The purpose of this research is to determine the water distribution system based on water optimization therefore the irrigation performance can be measured more precisely. Meanwhile, the methodology is uses descriptive research method on fields’ irrigation research. The results of this study will be obtained a irrigation water use services model.


Sign in / Sign up

Export Citation Format

Share Document