scholarly journals Structural, Morphological and thermal properties of Nano filler Produced from Date Palm-based Micro Fibers (Phoenix Dactylifera L.)

Author(s):  
Othman Y Alothman ◽  
H.M. Shaikh ◽  
Basheer A. Alshammari ◽  
Mohammad Jawaid

Abstract In this century, the development of nano-sized filler from biomass material has become the main focus of industries in achieving their final green composite product for wide range of applications. From commercial and environmental point of view, fragmentation and downsizing of waste lignocellulosic fibers without chemical treatments into small size particles is a viable option. In this study, an attempt was made to produce nano-sized lignocellulosic fillers from date palm micro fibers via simple mechanical ball milling process. The resultant nanofillers as well as the microfibers were characterized in details by various analytical techniques, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), particle size analysis (PSA), Energy Dispersive X-Ray (EDX), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to assess their structure­—property relationship. From microscopy examination, the nanofillers showed a heterogeneous mix of irregular shaped particles, and while having a size ranging of 30-110 nm in width and 1-10 mm length dimensions. Also, the crystallography analysis revealed the crystallinity had mildly declined from microfibers (71.8%) to nanofiller (68.9%) due to amorphization effect. As for thermal analysis, the nanofillers exhibited relatively stable in both heat resistance and thermos changing behavior, suggesting its suitability for composite fabrication process at high temperature. Thus, the produced nanofillers can be used as a low cost reinforcing agent in the future for versatile polymer-based composite systems.

2016 ◽  
Vol 864 ◽  
pp. 112-116
Author(s):  
Rinlee Butch M. Cervera ◽  
Emie A. Salamangkit-Mirasol

Rice hull or rice husk (RH) is an agricultural waste obtained from milling rice grains. Since RH has no commercial value and is difficult to use in agriculture, its volume is often reduced through open field burning which is an environmental hazard. In this study, amorphous nanosilica from Philippine waste RH was prepared via acid precipitation method. The synthesized samples were fully characterized for its microstructural properties. X-ray diffraction pattern reveals that the structure of the prepared sample is amorphous in nature while Fourier transform infrared spectrum showed the different vibration bands of the synthesized sample. Scanning electron microscopy (SEM) and particle size analysis (PSA) confirmed the presence of agglomerated silica particles. On the other hand, transmission electron microscopy (TEM) revealed an amorphous sample with grain sizes of about 5 to 20 nanometer range and has about 95 % purity according to EDS analyses. The elemental mapping also suggests that leaching of rice hull ash effectively removed the metallic impurity such as potassium element in the material. Hence, amorphous nanosilica was successfully prepared via a low-cost acid precipitation method from Philippine waste rice hull.


1989 ◽  
Vol 169 ◽  
Author(s):  
Rollin E. Lakis ◽  
Sidney R. Butler

AbstractY1Ba2Cu3O7 has been prepared by the evaporative decomposition of solutions method. Nitrate and mixed anion solutions were atomized and decomposed at temperatures ranging from 300°C to 950°C. The resulting materials have been characterized using x-ray powder diffraction, Thermal Gravimetric Analysis (TGA), particle size analysis, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The powder consists of 0.3 micron agglomerated hollow spheres with a primary particle size of 0.06 micron. TGA and x-ray diffraction indicate the presence of barium nitrate and barium carbonate due to incomplete decomposition and/or product contamination by the process environment.


2013 ◽  
Vol 1 (1) ◽  
pp. 11-14
Author(s):  
N. Sahu ◽  
◽  
R. K. Duchaniya ◽  

The ZnO-CdO nanocomposite was prepared by sol-gel method by using their respective nitrates. It is a simple and low cost method to prepare nanocomposites. The drying temperature and drying period of prepared gel was varied during the synthesis process. The prepared samples were characterized by using scanning electron microscope (SEM), particle size analysis (PSA), X-ray diffraction (XRD) and photoluminescence spectroscopy (PL) to get surface morphology, idea of getting particle of nanosized range so that further characterizations can be done, to study the optical property of synthesized nanocomposite and measure the band gap . The grain size determined by Scherrer’s formula was found to be between 30-50 nm.


2020 ◽  
Author(s):  
Xiaojian Bai ◽  
Chen Jia ◽  
Zhigen Chen ◽  
Yuxuan Gong ◽  
Huwei Cheng ◽  
...  

Abstract The painted statues of Tutang Buddha and two attendants Buddha in Jingyin Temple, with exquisite design and unique style, are precious cultural heritages of China. The statue of Tutang Buddha which was carved from a mound and painted by ancient craftsmen, is rarely found in ancient China. However, on account of the influence of natural factors and artificial harms, the statues were severly damaged. Obviously, it requires urgently carrying out appropriate protection and restoration of the statues. In this study, the samples taken from the statues were analysed by multiple analytical techniques, including scanning electron microscopy with energy dispersive spectrometry (SEM-EDS), Raman spectroscopy, X-ray diffraction (XRD), biological microscopy and particle size analysis. The analysis enabled us to infer the techniques used by the creators in making the statues. This research provides reliable evidence for the conservation and future protection of these and similar statues.


2020 ◽  
pp. 089270572096215
Author(s):  
Maryam Ataeefard ◽  
Mohammad Mahdi Salehi

The main element of electrophotographic (EP) printing and copying devices is a polymeric composite called toner and one of the most significant components of toner composite is an iron oxide (magnetite). Magnetite, which is applied as a colorant and additive for toner is the main mineral able to develop an electrical charge on the printing procedure. Although there are several ways to produce magnetite, given the dearth of resources and environmental aspect, it is safer to practice recycling and greener method. In the present study, an encouraging way to reuse the magnetite particles as a byproduct of the preparation of micro silica in the concrete industry was described. The obtained magnetite was then utilized as the charge control agent to produce magnetite/carbon black/styrene co-butyl acrylate composite microspheres by green emulsion aggregation method, which is used as toner in the printing procedure. Characterization of toner and recovered magnetite was done by X-ray Powder Diffraction (XRD), Atomic Gradient Force Magnetometry (AGFM), Particle Size Analysis (PSA), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX). The results supported the fact that the produced toner composite by recycled waste magnetite show suitable characteristics comparing to an industrial toner.


Author(s):  
F. Kristaly ◽  
M. Sveda ◽  
A. Sycheva ◽  
T. Miko ◽  
A. Racz ◽  
...  

Ti50Cu25Ni20Sn5 (at.%) powder was subjected to high-energy ball milling at room temperature and -78?C. As a function of the milling time, evaluation of phases, morphology and the refinement of grain size were investigated by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and laser-diffraction particle size analysis (PSA). The transformation of the crystalline structure into an amorphous structure and then the transformation into a nanocrystalline structure during further milling was detected. The stress-induced martensitic transformation has taken place after 30 min milling time at both temperatures, the cubic Cu(Ni,Cu)Ti2 phase transforms into the orthogonal structure. The hardness value of powders after 150 min milling time increases from 506 to 780 HV0.01. The milling temperature does not significantly influence the amount of amorphous fraction (33-36 wt.%) but the composition of amorphous content is more influenced by temperature. The interval of crystallite size was between 1.2 and 11.7 nm after 180 min of milling. The amount and the cell parameters of the Sn-containing phases are different between the two milling experiments, owing to the diffusion coefficients of the Sn atom differ to a large extent.


2014 ◽  
Vol 70 (a1) ◽  
pp. C644-C644
Author(s):  
Dyanne Cruickshank ◽  
Chick Wilson

There has been dramatic evolution in the formulation of household cleaning products over the last decade, this is mainly due to the influence of social change, regulatory pressure and the need for new less toxic, safer formulations with increased performance. Due to their high chemical reactivity, peroxides are found in a wide range of bleaching agents, they are known for their instability which is a direct consequence of their high reactivity (in turn essential for function). Stabilising such materials for implementation in a range of product types is a significant target within the domestic products industry. Supramolecular approaches are already being explored to try stabilise other chemically reactive species such as explosives [1,2] thus illustrating the feasibility of this research. The work to be presented will deal with peroxyacids that include small model compounds such as m-chloroperbenzoic acid as well as a commericially relevant bleaching agent and their inclusion in both crystalline and amorphous hosting systems. Single crystal X-ray diffraction methods are used to elucidate the ordered crystalline structures and to confirm whether or not the peroxo group is still intact within the crystalline host environments. Simple reactivity tests are used to demonstrate whether or not the amorphous host-guest complexes contain the active peroxy acid within their host cavity. Other complementary analytical techniques such as powder X-ray diffraction, differential scanning calorimetry and thermogravimetry have also been used to characterise the newly-hosted peroxyacid materials. By hosting these molecules in microenvironments it is possible to prepare formulations that are less pH sensitive, thus making their storage safer while allowing their reactivity to be controlled and tuned.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Maryam Ataeefard ◽  
Ebrahim Ghasemi ◽  
Mona Ebadi

Toner is a main component of electrophotographic printing and copying processes. One of the most important ingredients of toner is magnetite (Fe3O4) which provides the tribocharging property for toner particles. In this study, nano- and microparticles of Fe3O4were synthesized using the coprecipitation method and different amounts of lauric acid as a surfactant. The synthesized nano and micro Fe3O4was then used as the charge control agent to produce toner by emulsion aggregation. The Fe3O4and toner were characterized by X-ray powder diffraction (XRD), atomic gradient force magnetometry (AGFM), dynamic laser scattering (DLS), particle size analysis, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The results show that the optimum amount of surfactant not only reduced particle size but also reduced the magnetite properties of Fe3O4. It was found that the magnetite behavior of the toner is not similar to the Fe3O4used to produce it. Although small-sized Fe3O4created toner with a smaller size, toners made with micro Fe3O4showed better magnetite properties than toner made with nano Fe3O4.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Kh. Nurul Islam ◽  
A. B. Z. Zuki ◽  
M. E. Ali ◽  
Mohd Zobir Bin Hussein ◽  
M. M. Noordin ◽  
...  

A simple and low-cost method for the synthesis of calcium carbonate nanoparticles from cockle shells was described. Polymorphically, the synthesized nanoparticles were aragonites which are biocompatible and thus frequently used in the repair of fractured bone and development of advanced drug delivery systems, tissue scaffolds and anticarcinogenic drugs. The rod-shaped and pure aragonite particles of30±5 nm in diameter were reproducibly synthesized when micron-sized cockle shells powders were mechanically stirred for 90 min at room temperature in presence of a nontoxic and nonhazardous biomineralization catalyst, dodecyl dimethyl betaine (BS-12). The findings were verified using a combination of analytical techniques such as variable pressure scanning electron microscopy (VPSEM), transmission electron microscopy (TEM), Fourier transmission infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), and energy dispersive X-ray analyser (EDX). The reproducibility and low cost of the method suggested that it could be used in industry for the large scale synthesis of aragonite nanoparticles from cockle shells, a low cost and easily available natural resource.


Author(s):  
Lili Fitriani ◽  
Sherly Ramadhani ◽  
Erizal Zaini

ABSTRACTObjective: This study aims to prepare and characterize solid dispersion of famotidine using mannitol to enhance the solubility and dissolution rate.Methods: Solid dispersions were prepared by co-grinding method in 9 formulas. The ratio of famotidine and mannitol was varied (1:1, 1:2, 2:1 w/w),and each ratio was milled at three different times (30, 60, and 90 minutes). The physical mixture was also prepared as comparison at ratio 1:1 w/w.Solid dispersions were characterized by X-ray diffraction analysis, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry(DSC) analysis, scanning electron microscopy (SEM), particle size analysis, solubility, and dissolution rate study. The assay of famotidine was doneusing a UV spectrophotometer.Results: The highest solubility of famotidine in solid dispersion was obtained in F2 (ratio 1:2 and grinding time 30 minutes). The solubility of intactfamotidine, physical mixture, and solid dispersion F2 was 1.630±0.027, 2.757±0.096, and 3.272±0.076 mg/ml, respectively. X-ray diffractogram ofsolid dispersion F2 showed a decrease in the peak intensity of famotidine. Thermogram of DSC showed a decrease of famotidine melting point for bothphysical mixture and solid dispersion. Photomicrograph of SEM indicated the changes in morphology solid dispersion compared to intact substances.FTIR analysis showed no chemical interaction between famotidine and mannitol. The particle size analysis showed a reduction in the particle sizeof the solid dispersion. The dissolution result after 60 minutes was 85.029%, 86.166%, 92.057% for intact famotidine, physical mixture, and soliddispersion F2, respectively.Conclusion: Solid dispersion increased solubility and dissolution rate.Keywords: Solid dispersion, Famotidine, Mannitol, Co-grinding, Solubility.


Sign in / Sign up

Export Citation Format

Share Document