scholarly journals MATLAB Simulation of IEEE802.11p Technology on High User’s Mobility

Author(s):  
abderrahim mountaciri

Abstract In this article proposed IEEE 802.11p Physical layer (PHY). A MATLAB simulation is performed to analyze the baseband processing of the transceiver. Orthogonal Frequency Division Multiplexing (OFDM) is applied in this project according to the IEEE 802.11p standard, which allows data transmission rates from 3 to 27 Mbps. Separate modulation schemes, bit phase shift modulation (BPSK), quadrate phase shift modulation (QPSK), and quadrature amplitude modulation (QAM), are used for different data rates. These schemes are combined with time interleaving and a convolutional error correction code. A guard interval is inserted at the start of the transmitted symbol to reduce the effect of intersymbol interference (ISI). This article studies the PHY physical layer of the IEEE 802.11p vehicular communication standard. An IEEE.802.11p PHY model, with many associated phenomena, is implemented in the V2V vehicle-to- vehicle, and the vehicle-to-vehicle ad hoc network (VANET) provides convenient coordination between moving vehicles. A moving vehicle could move at a very high speed, producing a Doppler effect that damages OFDM symbols and also causes inter-carrier interference (ICI). This article has discussed VANET technology versus 802.11a technology, as they have many differences when it comes to user mobility. The Doppler effect resulting from the mobility of the user with a high speed of 25 to 400 km / h has been studied as the main parameter, the estimation of the channel based on the lms algorithm has been proposed in order to improve the performance of the physical physical chain

2013 ◽  
Vol 25 (5) ◽  
pp. 483-493 ◽  
Author(s):  
Luoyi HUANG ◽  
Jiao YAO ◽  
Wei WU ◽  
Xiaoguang YANG

With the evolution of advanced wireless communication technologies, tremendous efforts have been invested in vehicular networking, particularly the construction of a vehicle-to-vehicle communication system that supports high speed and mobility. In vehicle-to-vehicle communication environment, vehicles constantly exchange information using wireless technology. This paper aims to propose a vehicle-to-vehicle communication system and validate the feasibility of the system on a suburban road in China. Two vehicles were used equipped with IEEE 802.11p based DSRC (Dedicated Short Range Communications) device to construct a vehicle-to-vehicle communication platform. The system architecture consisting of hardware and software was described in details. Then, communication characteristics such as RSSI (Received Signal Strength Indicator), latency and PLR (packet loss rate) were analyzed. Additionally, GPS-related information (such as ground speed and location) was obtained through field test on a suburban road in Shanghai and Taicang City. The test results demonstrate satisfactory performance of the proposed system.


2016 ◽  
Vol 2016 ◽  
pp. 1-14
Author(s):  
Aymen Sassi ◽  
Yassin El Hillali ◽  
Atika Revenq ◽  
Faiza Charfi ◽  
Lotfi Kamoun

Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication systems, known as V2X technologies, have increasingly attracted attention in current research on road safety and traffic ergonomics. The performance evaluation of these communication systems is an important step before their potential integration and use in real systems. V2X communications are based on the IEEE 802.11p standard also known as Wireless Access in Vehicular Environment (WAVE). V2X can affect human life; therefore a deep study related to V2X performance evaluation should be done in order to be sure about the system reliability. In this context, we have elaborated a deep study related to the effect of transmission range on V2X communications by considering the terminal mobility. First, we have evaluated the performance of the PHY layer on the IEEE 802.11p using simulation. Secondly, we have conducted real case measurements using the Arada LocoMate Transmission system. The obtained results shows the necessity to optimize the quality of transmission in V2X communications. Consequently, we propose in this paper a new comb-pilot technique to enhance the quality of Orthogonal Frequency Division Multiplexing (OFDM) transmission. Our proposal consists in two new uses of the pilot subcarrier estimation technique in order to decrease the elevated bit error rate (BER). The quality of transmission (QoT) is first evaluated relating to the pilot symbol rearranged positions. Second, we proposed to optimize the QoT by adding two supplementary pilot symbols as it can offer better channel estimation results. Based on the performance evaluation of our proposal, it is confirmed that both of rearrangement and the adding of the pilot patterns lead to performance enhancement compared to baseline model (standardized one).


2018 ◽  
Vol 7 (4.5) ◽  
pp. 665 ◽  
Author(s):  
Yanita Shrimali ◽  
Janki Ballabh Sharma ◽  
R. S. Meena

Orthogonal Frequency Division Multiplexing (OFDM) is exceptionally favored system for rapid information transmission over remote channel. In this paper, VHDL implementation of low power turbo-coded OFDM (TCOFDM) Physical layer architecture is presented. In this architecture a low power memory-less pipelined FFT processor and Log-map turbo encoder/decoders are used to provide high throughput and lower complexity. Log-map turbo decoder provides high speed with good error correction capacity, while FFT/IFFT processor with single delay feedback (SDF) memory less architecture provide improved area and power efficiency. Proposed TCOFDM system is implemented using Xilinx ISE Design suite in the simulation results shows that the proposed scheme is having low power, high speed, high throughput and smaller area in comparison to other schemes.  


2011 ◽  
Vol 9 ◽  
pp. 173-177 ◽  
Author(s):  
M. Liso Nicolás ◽  
M. Jacob ◽  
T. Kürner

Abstract. This paper investigates the performance of the 60 GHz IEEE 802.15.3c physical layer (PHY) specification in terms of bit error rate (BER) against signal to noise ratio. Two PHY modes of the standard have been implemented and simulated, i.e., Single Carrier and High Speed Interface. The first mode uses single carrier (SC) block transmission and the second mode uses orthogonal frequency division multiplexing (OFDM). One of the main issues in the new 60 GHz standards is multipath propagation, which plays an important role in the link quality. Thus, we have tested the PHY with the IEEE standard channel model, ray tracing simulations and real 60 GHz measurements.


2017 ◽  
Vol 139 (12) ◽  
pp. S3-S7 ◽  
Author(s):  
Hans Andersen ◽  
Xiaotong Shen ◽  
You Hong Eng ◽  
Daniela Rus ◽  
Marcelo H. Ang

This article discusses how connected cooperative control of autonomous vehicles (AVs) can help in providing safe and comfortable mobility during unexpected road situations. Driving AVs in urban areas poses a big challenge due to the complexity of the traffic rules as well as unexpected scenarios involved. In these situations, an inter-vehicle communication system can be of great help. Cooperation between multiple AVs is possible with the development of vehicular communication. In particular, state estimation can be improved with multiple sources of information gathered from different vehicles. Cooperative state estimation can also improve robustness against communication failure. With future trajectories shared among nearby vehicles, the motion can be coordinated to make navigation safer and smoother for AVs. For vehicular communication, the IEEE 802.11p standard has been designed to allow information exchange between high-speed cars, and between vehicles and roadside infrastructure. Other wireless communication technologies, such as 3G, 4G, and WiFi, are also suggested.


2016 ◽  
Vol 1 ◽  
Author(s):  
Benriwati Maharmi

The WiMax (Worldwide Interoperability for Microwave Access) is a technology in<strong> </strong>broadband wireless access, which employs OFDM (Orthogonal Frequency Division Multiplexing) as an alternative transmission to enable high speed data in communication system. This research aim is to analyze the performance system of the OFDM-Based WiMAX, which used the cyclic prefix. The model was designed in four schemes of simulation method, the BPSK (Binary Phase Shift Keying, QPSK (Quadrature Phase Shift Keying), 16 QAM (Quadrature Amplitude Modulation) and 64 QAM. Each scheme was investigated BER (Bit Error Rate) on AWGN (Additive White Gaussian Noise) channel and multipath Rayleigh fading channel, which had applied the cyclic prefix. By simulation of the cyclic prefix was produced the modulation measurement of the BPSK, QPSK, 16 and 64 QAM. The performance result of Eb/No 15 dB was obtained the BER of BPSK and QPSK of 1.11E-11, the BER of 16 QAM and 64 QAM of 8.69E-06 and 0.00333 respectively. Those results indicated much smaller BER value than EbNo 0 dB which BPSK and QPSK of 1 BER, 1.5 and 1.75 BER for 16 QAM and 64 QAM respectively. In conclusion, a higher value of EbNo, hence the BER value would be lower.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Benriwati Maharmi

The WiMax (Worldwide Interoperability for Microwave Access) is a technology in<strong> </strong>broadband wireless access, which employs OFDM (Orthogonal Frequency Division Multiplexing) as an alternative transmission to enable high speed data in communication system. This research aim is to analyze the performance system of the OFDM-Based WiMAX, which used the cyclic prefix. The model was designed in four schemes of simulation method, the BPSK (Binary Phase Shift Keying, QPSK (Quadrature Phase Shift Keying), 16 QAM (Quadrature Amplitude Modulation) and 64 QAM. Each scheme was investigated BER (Bit Error Rate) on AWGN (Additive White Gaussian Noise) channel and multipath Rayleigh fading channel, which had applied the cyclic prefix. By simulation of the cyclic prefix was produced the modulation measurement of the BPSK, QPSK, 16 and 64 QAM. The performance result of Eb/No 15 dB was obtained the BER of BPSK and QPSK of 1.11E-11, the BER of 16 QAM and 64 QAM of 8.69E-06 and 0.00333 respectively. Those results indicated much smaller BER value than EbNo 0 dB which BPSK and QPSK of 1 BER, 1.5 and 1.75 BER for 16 QAM and 64 QAM respectively. In conclusion, a higher value of EbNo, hence the BER value would be lower.


Sign in / Sign up

Export Citation Format

Share Document