scholarly journals RIP3 mediates TCN-induced necroptosis through activating mitochondrial metabolism and ROS production in apoptosis-resistant cancer cells

2020 ◽  
Author(s):  
Xu Zhao ◽  
Jing Quan ◽  
Yue Tan ◽  
Ying Liu ◽  
Chaoliang Liao ◽  
...  

Abstract Background: Resisting cell death is one of the hallmarks of cancer. Necroptosis is a form of non-caspase dependent necrotic cell death mediated by receptor-interacting protein kinase-1/3 (RIP1/3), which represents another mode of programmed cell death besides apoptosis. Growing evidence supports that RIP3 has emerged as a critical regulator of necroptosis and can be activated by several stimuli to trigger necroptotic cell death in a RIP1-independent manner. RIP3 also acts as an energy metabolism regulator associated with switching cell death from apoptosis to necroptosis. Natural products provide a unique source for the discovery of innovative leading compounds and drugs, which exhibits promising anticancer activities through inducing cell death and enhancing chemotherapeutic sensitivity. Trichothecin (TCN) is a sesquiterpenoid originating from an endophytic fungus of the herbal plant Maytenus hookeri Loes and shows potent anti-tumor bioactivity. However, the underlying mechanism is not fully understood.Methods: Cell permeability assay and transmission electron microscopy were applied to identify the death pattern induced by TCN in apoptotic-resistant cancer cells. We used Seahorse extracellular flux analyzer to examine the cellular oxygen consumption rate (OCR) and flow cytometry to detect mitochondrial reactive oxygen species (ROS) content. Xenograft animal experiment was performed to assess the effect of TCN synergized with cisplatin to enhance chemotherapeutic sensitivity of tumor cells. Results: Our current findings revealed that RIP3 mediated TCN-induced necroptosis through activating mitochondria energy metabolism and ROS production in apoptotic-resistant cancer cells. RIP3 might be involved in sensitizing tumor cells to chemotherapy induced by TCN. Conclusions: Activating RIP3 to induce necroptosis through reprogramming mitochondrial energy metabolism and ROS production contributes to the anti-tumor activity of TCN. Moreover, TCN could be exploited for therapeutic gain through up-regulating RIP3 to sensitize cancer chemotherapy.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 942
Author(s):  
Helen Yarimet Lorenzo-Anota ◽  
Diana G. Zarate-Triviño ◽  
Jorge Alberto Uribe-Echeverría ◽  
Andrea Ávila-Ávila ◽  
José Raúl Rangel-López ◽  
...  

(1) Background: Chitosan-coated gold nanoparticles (CH-AuNPs) have important theranostic applications in biomedical sciences, including cancer research. However, although cell cytotoxicity has been studied in cancerous cells, little is known about their effect in proliferating primary leukocytes. Here, we assessed the effect of CH-AuNPs and the implication of ROS on non-cancerous endothelial and fibroblast cell lines and in proliferative lymphoid cells. (2) Methods: The Turkevich method was used to synthetize gold nanoparticles. We tested cell viability, cell death, ROS production, and cell cycle in primary lymphoid cells, compared with non-cancer and cancer cell lines. Concanavalin A (ConA) or lipopolysaccharide (LPS) were used to induce proliferation on lymphoid cells. (3) Results: CH-AuNPs presented high cytotoxicity and ROS production against cancer cells compared to non-cancer cells; they also induced a different pattern of ROS production in peripheral blood mononuclear cells (PBMCs). No significant cell-death difference was found in PBMCs, splenic mononuclear cells, and bone marrow cells (BMC) with or without a proliferative stimuli. (4) Conclusions: Taken together, our results highlight the selectivity of CH-AuNPs to cancer cells, discarding a consistent cytotoxicity upon proliferative cells including endothelial, fibroblast, and lymphoid cells, and suggest their application in cancer treatment without affecting immune cells.


2018 ◽  
Vol 19 (12) ◽  
pp. 3952 ◽  
Author(s):  
Maria Mrakovcic ◽  
Lauren Bohner ◽  
Marcel Hanisch ◽  
Leopold F. Fröhlich

Tumor development and progression is the consequence of genetic as well as epigenetic alterations of the cell. As part of the epigenetic regulatory system, histone acetyltransferases (HATs) and deacetylases (HDACs) drive the modification of histone as well as non-histone proteins. Derailed acetylation-mediated gene expression in cancer due to a delicate imbalance in HDAC expression can be reversed by histone deacetylase inhibitors (HDACi). Histone deacetylase inhibitors have far-reaching anticancer activities that include the induction of cell cycle arrest, the inhibition of angiogenesis, immunomodulatory responses, the inhibition of stress responses, increased generation of oxidative stress, activation of apoptosis, autophagy eliciting cell death, and even the regulation of non-coding RNA expression in malignant tumor cells. However, it remains an ongoing issue how tumor cells determine to respond to HDACi treatment by preferentially undergoing apoptosis or autophagy. In this review, we summarize HDACi-mediated mechanisms of action, particularly with respect to the induction of cell death. There is a keen interest in assessing suitable molecular factors allowing a prognosis of HDACi-mediated treatment. Addressing the results of our recent study, we highlight the role of p53 as a molecular switch driving HDACi-mediated cellular responses towards one of both types of cell death. These findings underline the importance to determine the mutational status of p53 for an effective outcome in HDACi-mediated tumor therapy.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Wasitta Rachakhom ◽  
Ratana Banjerdpongchai

Calomelanone, 2 ′ ,6 ′ -dihydroxy-4,4 ′ -dimethoxydihydrochalcone, possesses anticancer activities. This study was conducted to investigate the cytotoxic effect of calomelanone, a dihydrochalcone analogue, on human cancer cells and its associated mechanisms. The cytotoxic effect of calomelanone was measured by MTT assay. Annexin V-FITC/propidium iodide and DiOC6 staining that employed flow cytometry were used to determine the mode of cell death and reduction of mitochondrial transmembrane potential (MTP), respectively. Caspase activities were measured using specific substrates and colorimetric analysis. The expression levels of Bcl-2 family proteins were determined by immunoblotting. Reactive oxygen species were also measured using 2 ′ ,7 ′ -dihydrodichlorofluorescein diacetate and dihydroethidium (fluorescence dyes). Calomelanone was found to be toxic towards various human cancer cells, including acute promyelocytic HL-60 and monocytic leukemic U937 cells, in a dose-dependent manner at 24 h and human hepatocellular HepG2 cells at 48 h. However, the proliferation of HepG2 cells increased at 24 h. Calomelanone was found to induce apoptosis in HL-60 and U937 at 24 h and HepG2 apoptosis at 48 h via the intrinsic pathway by inducing MTP disruption. This compound also induced caspase-3, caspase-8, and caspase-9 activities. Calomelanone upregulated proapoptotic Bax and Bak and downregulated antiapoptotic Bcl-xL proteins in HepG2 cells. Moreover, signaling was also associated with oxidative stress in HepG2 cells. Calomelanone induced autophagy at 24 h of treatment, which was evidenced by staining with monodansylcadaverine (MDC) to represent autophagic flux. This was associated with a decrease of Akt (survival pathway) and an upregulation of Atg5 (the marker of autophagy). Thus, calomelanone induced apoptosis/regulated cell death in HL-60, U937, and HepG2 cells. However, it also induced autophagy in HepG2 depending on duration, dose, and type of cells. Thus, calomelanone could be used as a potential anticancer agent for cancer treatment. Nevertheless, acute and chronic toxicity should be further investigated in animals before conducting investigations in human patients.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Indira Majumder ◽  
Subhabrata Paul ◽  
Anish Nag ◽  
Rita Kundu

AbstractSundarbans Mangrove Ecosystem (SME) is a rich repository of bioactive natural compounds, with immense nutraceutical and therapeutic potential. Till date, the algal population of SME was not explored fully for their anticancer activities. Our aim is to explore the potential of these algal phytochemicals against the proliferation of cervical cancer cells (in vitro) and identify the mode of cell death induced in them. In the present work, the chloroform fraction of marine green alga, Chaetomorpha brachygona was used on SiHa cell line. The algal phytochemicals were identified by GCMS, LCMS and column chromatography and some of the identified compounds, known for significant anticancer activities, have shown strong Bcl-2 binding capacity, as analyzed through molecular docking study. The extract showed cytostatic and cytotoxic activity on SiHa cells. Absence of fragmented DNA, and presence of increased number of acidic vacuoles in the treated cells indicate nonapoptotic cell death. The mode of cell death was likely to be autophagic, as indicated by the enhanced expression of Beclin 1 and LC3BII (considered as autophagic markers) observed by Western blotting. The study indicates that, C. brachygona can successfully inhibit the proliferation of cervical cancer cells in vitro.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Blassan P. George ◽  
Heidi Abrahamse

Bioactive compounds from plants represent good candidate drugs for the prevention and treatment of various forms of cancer. Berries are rich sources of bioactive compounds, and there has been an increasing interest in the study of therapeutic action of wild berries. Oxidants are generated continuously in biological system as a result of physiological process. When there is an imbalance between oxidants and antioxidants, it leads to a condition called oxidative stress. Natural compounds as inducers of oxidative stress are able to modulate the physiological functions of cancer cells leading to cell death or survival. The aim of this study was to evaluate the induction of apoptosis by isolated bioactive compounds (1-(2-hydroxyphenyl)-4-methylpentan-1-one (C1) and 2-[(3-methylbutoxy) carbonyl] benzoic acid (C2)) from Rubus fairholmianus against MCF-7 breast cancer cells. The exposure of C1 and C2 reduced viability (IC50 of C1: 4.69; C2: 8.36 μg/mL) and proliferation. Cytochrome c release from mitochondria and changes in mitochondrial membrane potential of treated cells supported the intrinsic apoptotic cell death. Reactive oxygen species (ROS) production after treatment with C1 and C2 was found to be higher and induced nuclear damage. Expression of apoptotic proteins after the treatments was significantly upregulated as indicated using immunofluorescence (caspase 9, p53, and Bax), western blotting (p53, cleaved PARP, cytochrome c, and Bax), and ELISA (caspase 9) analysis. Overall, C1 was more cytotoxic, increased the ROS production in dichlorodihydrofluorescein diacetate assay, and induced apoptosis in breast cancer cells. These results illustrate that berry bioactive compounds have strong chemopreventive potential. In this article, we provide information on prooxidant and anticancer activities of Rubus bioactive compounds. Natural products have always demonstrated a significant contribution to the development of several cancer chemotherapeutic drugs. Most of these compounds are known to affect the redox state of the cell; and studies on these compounds have focused on their antioxidant property instead of prooxidant properties.


2008 ◽  
Vol 374 (1) ◽  
pp. 111-116 ◽  
Author(s):  
Miyako Baba ◽  
Masahiro Inoue ◽  
Kazuyuki Itoh ◽  
Yasuko Nishizawa

2011 ◽  
Vol 256 (3) ◽  
pp. 241-248 ◽  
Author(s):  
Nidhi Dwivedi ◽  
Ashish Mehta ◽  
Abhishek Yadav ◽  
B.K. Binukumar ◽  
Kiran Dip Gill ◽  
...  

2018 ◽  
Author(s):  
Ricardo Guimarães Amaral ◽  
Silvana Vieira Floresta Gomes ◽  
Ângelo Roberto Antoniolli ◽  
Maria Claudia dos Santos Luciano ◽  
Cláudia do Ó Pessoa ◽  
...  

AbstractThis work aimed to evaluate the cytotoxic potential against cancer cells of Passiflora genus plant species cultivated in Brazil and identify the mechanism of cytotoxicity induced by the most promising extract. Leaf extracts from 14 Passiflora (P.) species were obtained ASE and in vitro cytotoxicity evaluated against cancer cell lines using MTT assay at a single concentration of 50 μg/mL. Additionally, the IC50 of the P. alata (ELPA) leaf extracts was determined against both tumor (HCT-116, SF-295, OVACAR-8, and HL-60), and non-tumor cells (PBMC). The ELPA flavonoids were identified by HPLC-DAD and UHPLC-MS/MS. The morphological analyses used light and fluorescence microscopy, and cell cycle and DNA fragmentation analyses used flow cytometry to determine the mechanism of cell death induced by ELPA in HL-60. Among the Passiflora leaf extracts evaluated; ELPA stood out with high cytotoxic activity, followed by P. capsularis and P. quadrangulares with varying high and low cytotoxic activity. ELPA presented high cytotoxic potency in HL-60 (IC50 19.37 μg/mL), yet without cytotoxic activity against PBMC, suggesting selectivity for tumor cells. The cytotoxic activity of ELPA may well be linked to the presence of ten identified flavonoids. Cells treated with ELPA presented the hallmarks typical of apoptosis and necrosis, with cell cycle arrest in the G2/M phase. Conclusion: From among the studied species, ELPA presented greater cytotoxic activity, possibly a consequence of synergistic flavonoid action which induces cell death by apoptosis and necrosis.


Sign in / Sign up

Export Citation Format

Share Document