scholarly journals Inhibition of TRIM32 Attenuates the Apoptosis, Oxidative Stress and Inflammatory Injury of Podocytes Induced by High Glucose by Affecting the Akt/GSK-3β/Nrf2 Pathway

Author(s):  
Zhao Chen ◽  
Lifang Tian ◽  
Li Wang ◽  
Xiaotao Ma ◽  
Fuqian Lei ◽  
...  

Abstract Hyperglycemia-induced oxidative stress of podocytes exerts a major role in the pathological process of diabetic nephropathy. Tripartite motif-containing protein 32 (TRIM32) has been reported as a key protein in the modulation of cellular apoptosis and oxidative stress under various pathological processes. However, whether TRIM32 participates in the regulation of high glucose (HG)-induced injury in podocytes has not been investigated. The aims of this work were to assess the possible role of TRIM32 in mediating HG-induced apoptosis, oxidative stress and inflammatory response in podocytes in vitro. Herein, our results showed a marked increase in TRIM32 expression in HG-exposed podocytes. Loss-of-function experiments showed that the knockdown of TRIM32 improved the viability of HG-stimulated podocytes, and suppressed HG-induced apoptosis, oxidative stress and inflammatory response in podocytes. Further investigation revealed that the inhibition of TRIM32 enhanced the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling associated with modulation of the Akt/glycogen synthase kinase-3β (GSK-3β) axis in podocytes following HG exposure. However, the suppression of Akt abrogated the TRIM32-knockdown-mediated activation of Nrf2 in HG-exposed podocytes. In addition, the knockdown of Nrf2 markedly abolished the TRIM32-inhibition-induced protective effects in HG-exposed podocytes. In summary, the results of this work show that the inhibition of TRIM32 protects podocytes from HG-induced injury by potentiating Nrf2 signaling via the modulation of Akt/GSK-3β signaling. This study indicates a potential role of TRIM32 in mediating podocyte injury during the progression of diabetic nephropathy.

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Katja Kanninen ◽  
Anthony R. White ◽  
Jari Koistinaho ◽  
Tarja Malm

Specific regions of the Alzheimer's disease (AD) brain are burdened with extracellular protein deposits, the accumulation of which is concomitant with a complex cascade of overlapping events. Many of these pathological processes produce oxidative stress. Under normal conditions, oxidative stress leads to the activation of defensive gene expression that promotes cell survival. At the forefront of defence is the nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that regulates a broad spectrum of protective genes. Glycogen synthase kinase-3β (GSK-3β) regulates Nrf2, thus making this kinase a potential target for therapeutic intervention aiming to boost the protective activation of Nrf2. This paper aims to review the neuroprotective role of Nrf2 in AD, with special emphasis on the role of GSK-3β in the regulation of the Nrf2 pathway. We also examine the potential of inducing GSK-3β by small-molecule activators, dithiocarbamates, which potentially exert their beneficial therapeutic effects via the activation of the Nrf2 pathway.


2021 ◽  
Vol 27 ◽  
Author(s):  
Jingbo Zhou ◽  
Shu Zhang ◽  
Xinyi Sun ◽  
Yan Lou ◽  
Jiangyi Yu

Hyperoside, a flavonol glycoside, is derived from plants of the genera Hypericum and Crataegus. Recent studies have indicated the anti-apoptotic and anti-inflammatory roles of hyperoside. The present study was designed to measure the effects of hyperoside on high glucose (HG)-treated HK-2 cells. HK-2 is a human papillomavirus 16 transformed cell line and can be used as a model for normal tubular cell. Cell apoptosis was examined by TUNEL assays and flow cytometry analysis. Inflammatory response was detected by Enzyme linked immunosorbent assay kits. Western blotting was applied to detect protein levels of apoptosis-related genes and inflammatory cytokines. Mechanistical assays including luciferase reporter and RNA pull down assays were applied to detect the binding relationship between molecules. We identified that hyperoside protected HK-2 cells against HG-induced apoptosis and inflammation. Moreover, miR-499a-5p was upregulated by hyperoside in a dose dependent manner. MiR-499a-5p inhibition rescued the suppressive effects of hyperoside on apoptosis and inflammation of HG-treated HK-2 cells. Furthermore, miR-499a-5p targeted NRIP1 to inhibit its mRNA expression, and further suppressed its translation. NRIP1 was downregulated by hyperoside in a dose dependent manner. Finally, rescue assays indicated that miR-499a-5p inhibition rescued the protective effects of hyperoside on apoptosis and inflammatory response of HK-2 cells by NRIP1. In conclusion, our findings revealed that hyperoside alleviates HG-induced apoptosis and inflammatory response of HK-2 cells by the miR-499a-5p/NRIP1 axis.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1043 ◽  
Author(s):  
Megan Culbreth ◽  
Michael Aschner

In the past decade, it has become evident that glycogen synthase kinase 3β (GSK-3β) modulates the nuclear factor erythroid 2-related factor 2 (Nrf2) oxidative stress response. GSK-3β functions as an inhibitor, both directly in the activation and indirectly in the post-induction of Nrf2. The incidence of oxidative stress in neurological dysfunction and disease has made this signaling pathway an attractive therapeutic target. There is minimal evidence, however, to support a distinctive function for GSK-3β mediated Nrf2 inhibition in nervous system decline, apart from the typical oxidative stress response. In both Alzheimer’s disease and brain ischemia, this pathway has been explored for potential benefits on disease etiology and advancement. Presently, it is unclear whether GSK-3β mediated Nrf2 inhibition markedly influences these disease states. Furthermore, the potential that each has unique function in neurodegenerative decline is unsubstantiated.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Jong Ho Shin ◽  
Kyeong Min Kim ◽  
Jin Uk Jeong ◽  
Jae Min Shin ◽  
Ju Hyung Kang ◽  
...  

Background. Epithelial-to-mesenchymal transition (EMT) is thought to play a significant role in the advancement to chronic kidney disease and contributes to the deposition of extracellular matrix proteins and renal fibrosis relating to diabetic nephropathy. Method. We studied the effect of Nrf2-HO-1 signaling on high-glucose- (HG-) induced EMT in normal human tubular epithelial cells, that is, HK2 cells. In short, we treated HK2 cells with HG and sulforaphane (SFN) as an Nrf2 activator. EMT was evaluated by the expression activity of the epithelial marker E-cadherin and mesenchymal markers such as vimentin and fibronectin. Results. Exposure of HK2 cells to HG (60 mM) activated the expression of vimentin and fibronectin but decreased E-cadherin. Treatment of HK2 cells with SFN caused HG-induced attenuation in EMT markers with activated Nrf2-HO-1. We found that SFN decreased HG-induced production of reactive oxygen species (ROS), phosphorylation of PI3K/Akt at serine 473, and inhibitory phosphorylation of serine/threonine kinase glycogen synthase kinase-3β (GSK-3β) at serine 9. Subsequently, these signaling led to the downregulation of the Snail-1 transcriptional factor and the recovery of E-cadherin. Conclusion. The present study suggests that Nrf2-HO-1 signaling has an inhibitory role in the regulation of EMT through the modulation of ROS-mediated PI3K/Akt/GSK-3β activity, highlighting Nrf2-HO-1 and GSK-3β as potential therapeutic targets in diabetic nephropathy.


2017 ◽  
Vol 45 (07) ◽  
pp. 1441-1457 ◽  
Author(s):  
Lin An ◽  
Mei Zhou ◽  
Faiz M. M. T. Marikar ◽  
Xue-Wen Hu ◽  
Qiu-Yun Miao ◽  
...  

Diabetic nephropathy (DN) is a common cause of chronic kidney disease and end-stage renal disease, which can be triggered by oxidative stress. In this study, we investigated the renoprotective effect of the ethyl acetate extract of Salvia miltiorrhiza (EASM) on DN and examined the underlying molecular mechanism. We observed that EASM treatment attenuated metabolic abnormalities associated with hyperglycemic conditions in the experimental DN model. In streptozotocin (STZ)-induced mice, EASM treatment reduced albuminuria, improved renal function and alleviated the pathological alterations within the glomerulus. To mimic the hyperglycemic conditions in DN patients, we used high glucose (25[Formula: see text]mmol/L) media to stimulate mouse mesangial cells (MMCs), and EASM inhibited high glucose-induced reactive oxygen species. We also observed that EASM enhanced the expression of nuclear factor erythroid-2-related factor 2 (Nrf2), which mediated the anti-oxidant response, and its downstream gene heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) with concomitant decrease of expression of kelch-like ECH-associated protein 1 (keap1) both in vitro and in vivo. Taken together, these results suggest that EASM alleviates the progression of DN and this might be associated with activation of Nrf2.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Wenpeng Cui ◽  
Yang Bai ◽  
Xiao Miao ◽  
Ping Luo ◽  
Qiang Chen ◽  
...  

The present study was to investigate whether sulforaphane (SFN) can prevent diabetic nephropathy in type 1 diabetic mouse model induced by multiple low-dose streptozotocin. Diabetic and age-matched control mice were given SFN at 0.5 mg/kg body weight daily for 3 months. At the end of 3-month SFN treatment, the diabetic nephropathy, shown by renal inflammation, oxidative damage, fibrosis, and dysfunction, was significantly prevented along with an elevation of renal Nrf2 expression and transcription in diabetes/SFN group compared with diabetic group. However, this renal prevention by SFN was not seen when the 3-month SFN-treated diabetic mice were aged for additional 3 months without further SFN treatment. Nrf2-mediated renal protective effects in diabetes were evaluated in human renal tubular HK11 cells transfected with control and Nrf2 siRNA and treated with 27.5 mM mannitol or high glucose plus palmitate (300 μM). Blockade of Nrf2 expression completely abolished SFN prevention of the profibrotic effect induced by high glucose plus palmitate. These results support that renal Nrf2 expression and its transcription play important roles in SFN prevention of diabetes-induced renal damage. However, the SFN preventive effect on diabetes-induced renal pathogeneses is not sustained, suggesting the requirement of continual use of SFN for its sustained effect.


2008 ◽  
Vol 198 (3) ◽  
pp. 511-521 ◽  
Author(s):  
Hyunju Chung ◽  
Sanghee Seo ◽  
Minho Moon ◽  
Seungjoon Park

Only acylated ghrelin (AG) binds GH secretagog receptor 1a (GHS-R1a) and has central endocrine activities. An anti-apoptotic effect of AG in neuronal cells has recently been reported. However, whether there is a neuroprotective effect of unacylated ghrelin (UAG), the most abundant form of ghrelin in plasma, is still unknown. Therefore, we investigated whether UAG was neuroprotective against ischemic neuronal injury using primary cultured rat cortical neurons exposed to oxygen and glucose deprivation (OGD). Both AG and UAG inhibited OGD-induced apoptosis. Exposure of cells to the receptor-specific antagonist d-Lys-3-GHRH-6 abolished the protective effects of AG against OGD, whereas those of UAG were preserved, suggesting the involvement of a receptor that is distinct from GHS-R1a. Chemical inhibition of MAPK and phosphatidylinositol-3-kinase (PI3K) blocked the anti-apoptotic effects of AG and UAG. Ghrelin siRNA enhanced apoptosis either during OGD or even in normoxic conditions. The protective effects of AG and UAG were accompanied by an increased phosphorylation of extracellular signal-regulated kinase (ERK)1/2, Akt, and glycogen synthase kinase-3β (GSK-3β). Furthermore, treatment of cells with AG or UAG resulted in nuclear translocation of β-catenin. In addition, both AG and UAG increased the Bcl-2/Bax ratio, prevented cytochrome c release, and inhibited caspase-3 activation. The data indicate that, independent of acylation, ghrelin can function as a neuroprotective agent that inhibits apoptotic pathways. These effects may be mediated via activation of the MAPK and PI3K/Akt pathways. Our data also suggest that PI3K/Akt-mediated inactivation of GSK-3β and stabilization of β-catenin contribute to the anti-apoptotic effects of ghrelin.


Sign in / Sign up

Export Citation Format

Share Document