scholarly journals Silencing MASTL Inhibits Cell Proliferation and Migration of Gastric Cancer MGC-803 Cells Via Suprressing AKT, mTOR, p38 Signal Pathways

2020 ◽  
Author(s):  
caixia An ◽  
hailong li ◽  
Rong Niu ◽  
xiaoguang liu ◽  
Yonghua Hu ◽  
...  

Abstract Background: Microtubule-associated serine/threonine kinase (MASTL) functions to regulate chromosome condensation and mitotic progression. Emerging reports showed that aberrant MASTL expression is commonly implicated in various human cancers and act as an oncogene. This study aimed to discover the potential significance of MASTL in gastric cancer, and to uncover relevant mechanisms. Methods: Lentivirus MASTL-shRNA was constructed and infected into MGC-803 cells to analysis its influences on cell proliferation by Green fluorescent protein (GFP)-based cellomics and colony formation assay, cell invasion and migration by transwell assay, apoptosis and cell cycle by flow cytometry detection, respectively. Nude mice and fluorescence imaging were used to characterize the regulation of tumor growth in vivo. Affymetrix mRNA microarray assay combined KEGG enrichment analysis were used to screen relevant molecules related to MASTL silencing. Finally,several aberrantly expressed genes were validated by quantitative reverse transcription PCR(RT-qPCR)and western blot detection. Results: Silencing MASTL significantly inhibited cell proliferation, migration and invasion, arrested cell cycle at G1 stage. Silencing MASTL reduced tumor growth in nude mice, and fluorescence imaging indicated that the total radiant efficiency of mice in the Lv-shMAST group was markedly reduced compared with in mice in the Lv-shCtrl group in vivo. Affymetrix mRNA microarray assay revealed that 124 genes upregulated, 167 genes downregulated. RT-qPCR and western blotting validation showed that cyclin dependent kinase 6(CDK6), bone morphogenetic protein 2(BMP2), snail family transcriptional repressor 2(SNAI2), phosphorylation-mechanistic target of rapamycin kinase (p-mTOR), phosphorylation-AKT serine/threonine kinase (p-AKT) and phosphorylation-p38 kinase (p-p38) are downregulated, and cyclin dependent kinase inhibitor 1A (CDKN1A) is upregulated. Conclusions: Silencing MASTL could significantly inhibit cell growth, migration ability, induce apoptosis, arrest cell cycle at G1 stage, and the mechanisms of which were mediated via inactivation of mTOR, AKT, p38 signal pathways.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiong Ma ◽  
Chunxia Zhou ◽  
Xuejun Chen

Abstract Background Hedgehog (Hh) signaling pathway, which is essential for cell proliferation and differentiation, is noted to be aberrantly activated in tumor from increasing studies in recent years. MicroRNAs (miRNAs) as an important non-coding RNA in cells have been proven to possess a regulatory role specific to the Hh signaling pathway. Here, in vitro and in vivo cellular/molecular experiments were adopted to clarify the regulatory mechanism linking miR-636 to the Hh signaling pathway in ovarian cancer (OVC). Methods Protein–protein interaction analysis was performed to identify the hub gene in the Hh pathway. TargetScan database was used to predict the potential upstream regulators for Gli2. qRT-PCR was performed to test the expression of miR-636, while Western blot was conducted to detect the expression of proteins related to the Hh pathway and epithelial-mesenchymal transition (EMT). For cell functional experiments, HO-8910PM OVC cell line was used. MTT assay and wound healing assay were used to measure the effect of miR-636 on cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used to identify the change in expression of Hh and EMT-related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeting relationship between miR-636 and Gli2. Xenotransplantation models were established for in vivo examination. Results Gli2 was identified as the hub gene of the Hh pathway and it was validated to be regulated by miR-636 based on the data from TargetScan and GEO databases. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines, and overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation, migration and induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 caused opposite results. Dual-luciferase reporter gene assay revealed that Gli2 was the target gene of miR-636 in OVC. Besides, overexpressed miR-636 decreased protein expression of Gli2, and affected the expression of proteins related to the Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration, and attenuated the blocking effect of miR-636 on cell cycle. The xenotransplantation experiment suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process of OVC cells via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation in vivo. Conclusion miR-636 mediates the activation of the Hh pathway via binding to Gli2, thus inhibiting EMT, suppressing cell proliferation and migration of OVC. Trial registration: The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of The Second Affiliated hospital of Zhejiang University School of Medicine (IR2019001235). Written informed consent was obtained from individual or guardian participants.


Author(s):  
Jiewei Lin ◽  
Shuyu Zhai ◽  
Siyi Zou ◽  
Zhiwei Xu ◽  
Jun Zhang ◽  
...  

Abstract Background FLVCR1-AS1 is a key regulator of cancer progression. However, the biological functions and underlying molecular mechanisms of pancreatic cancer (PC) remain unknown. Methods FLVCR1-AS1 expression levels in 77 PC tissues and matched non-tumor tissues were analyzed by qRT-PCR. Moreover, the role of FLVCR1-AS1 in PC cell proliferation, cell cycle, and migration was verified via functional in vitro and in vivo experiments. Further, the potential competitive endogenous RNA (ceRNA) network between FLVCR1-AS1 and KLF10, as well as FLVCR1-AS1 transcription levels, were investigated. Results FLVCR1-AS1 expression was low in both PC tissues and PC cell lines, and FLVCR1-AS1 downregulation was associated with a worse prognosis in patients with PC. Functional experiments demonstrated that FLVCR1-AS1 overexpression significantly suppressed PC cell proliferation, cell cycle, and migration both in vitro and in vivo. Mechanistic investigations revealed that FLVCR1-AS1 acts as a ceRNA to sequester miR-513c-5p or miR-514b-5p from the sponging KLF10 mRNA, thereby relieving their suppressive effects on KLF10 expression. Additionally, FLVCR1-AS1 was shown to be a direct transcriptional target of KLF10. Conclusions Our research suggests that FLVCR1-AS1 plays a tumor-suppressive role in PC by inhibiting proliferation, cell cycle, and migration through a positive feedback loop with KLF10, thereby providing a novel therapeutic strategy for PC treatment.


2020 ◽  
Vol 21 (11) ◽  
pp. 4122 ◽  
Author(s):  
Miao Yu ◽  
Xiaoyan Shi ◽  
Mengmeng Ren ◽  
Lu Liu ◽  
Hao Qi ◽  
...  

Serine-threonine kinase receptor-associated protein (STRAP) functions as a regulator of both TGF-β and p53 signaling that participates in the regulation of cell proliferation and cell death in response to various stresses. Here, we demonstrate that STRAP acetylation plays an important role in p53-mediated cell cycle arrest and apoptosis. STRAP is acetylated at lysines 147, 148, and 156 by the acetyltransferases CREB-binding protein (CBP) and that the acetylation is reversed by the deacetylase sirtuin7 (SIRT7). Hypo- or hyperacetylation mutations of STRAP at lysines 147, 148, and 156 (3KR or 3KQ) influence its activation and stabilization of p53. Moreover, following 5-fluorouracil (5-FU) treatment, STRAP is mobilized from the cytoplasm to the nucleus and promotes STRAP acetylation. Our finding on the regulation of STRAP links p53 with SIRT7 influencing p53 activity and stability.


2017 ◽  
Vol 42 (4) ◽  
pp. 1670-1683 ◽  
Author(s):  
Yiran Si ◽  
Haiyang Zhang ◽  
Tao Ning ◽  
Ming Bai ◽  
Yi Wang ◽  
...  

Background/Aims: Abnormal expression of HGF is found in various cancers and correlates with tumor proliferation, metastasis and angiogenesis. However, the regulatory mechanism of the HGF-VEGF axis remains unclear. Methods: The expression characteristic of HGF in human gastric cancer tissues was shown by an immunohistochemistry assay, and the expression levels of target protein were detected by Western blot. The relative levels of miR-26a/b and target mRNA were examined by qRT-PCR. We used bioinformatics tools to search for miRNAs that can potentially target HGF. A luciferase assay was used to confirm direct targeting. Furthermore, the functions of miR-26a/b and HGF were evaluated by cell proliferation and migration assays in vitro and by the mouse xenograft tumor model in vivo. Results: We found that the HGF protein was clearly increased while miR-26a/b were dramatically down-regulated in gastric cancer. miR-26a/b directly bind to the 3’-UTR of HGF mRNA at specific targeting sites. We demonstrated that the repression of the HGF-VEGF pathway by miR-26a/b overexpression suppressed gastric cancer cell proliferation and migration. Furthermore, miR-26a/b also showed an anti-tumor effect in the xenograft mouse model by suppressing tumor growth and angiogenesis. Conclusions: miR-26a/b could suppress tumor tumorigenesis and angiogenesis by targeting the HGF-VEGF axis and could serve as a potential treatment modality for targeted therapy in the clinical treatment of gastric cancer.


2020 ◽  
Author(s):  
Yeting Hong ◽  
Wei He ◽  
Jianbin Zhang ◽  
Lu Shen ◽  
Chong Yu ◽  
...  

Abstract Background: Cyclin D3-CDK6 complex is a component of the core cell cycle machinery that regulates cell proliferation. By using Human Protein Atlas database, a higher expression level of this complex was found in gastric cancer. However, the function of this complex in gastric cancer remain poorly understood. This study aims to determine the expression pattern of this complex in gastric cancer and to investigate its biological role during tumorigenesis.Methods: To demonstrate that Cyclin D3-CDK6 regulate the c-Myc/miR-15a/16 axis in a feedback loop in gastric cancer, a series of methods were conducted both in vitro and in vivo experiments, including qRT-PCR, western blot analysis, EdU assay, flow cytometry, luciferase reporter assay and immunohistochemical staining. SPSS and Graphpad prism software were used for data analysis.Results: In this study, we found that Cyclin D3 and CDK6 were significantly upregulated in gastric cancer and correlated with poorer overall survival. Further study proved that this complex significantly promoted cell proliferation and cell cycle progression in vitro and accelerated xenografted tumor growth in vivo. Furthermore, we explored the molecular mechanisms through which the complex mediated Rb phosphorylation and then promoted c-Myc expression in vitro, we also found c-Myc could suppress miR-15a/16 expression in gastric cancer cell. Finally, we found that miR-15a/16 can simultaneously regulate Cyclin D3 and CDK6 expression as direct target genes.Conclusions: Our findings uncover the Cyclin D3-CDK6/c-Myc/miR-15a/16 feedback loop axis as a pivotal role in the regulation of gastric cancer tumorigenesis, and this regulating axis may provide a potential therapeutic target for gastric cancer treatment.


2021 ◽  
Author(s):  
Pooja Sharma ◽  
Sarah Tiufekchiev ◽  
Victoria Lising ◽  
Seung Woo Chung ◽  
Jung Soo Suk ◽  
...  

Cyclin D3 regulates the G1/S transition and is frequently overexpressed in several cancer types including breast cancer, where it promotes tumor progression. Here, we show that a cytoskeletal protein keratin 19 (K19) physically interacts with a serine/threonine kinase GSK3β and prevents GSK3β-dependent degradation of cyclin D3. The absence of K19 allowed active GSK3β to accumulate in the nucleus and degrade cyclin D3. Specifically, the head domain of K19 was required to sustain inhibitory phosphorylation of GSK3β Ser9, prevent nuclear accumulation of GSK3β, and maintain cyclin D3 levels and cell proliferation. K19 was found to interact with GSK3β and K19-GSK3β interaction was mapped out to require Ser10 and Ser35 residues on the head domain of K19. Unlike wildtype K19, S10A and S35A mutants failed to maintain total and nuclear cyclin D3 levels and induce cell proliferation. Finally, we show that the K19-GSK3β-cyclin D3 pathway affected sensitivity of cells towards inhibitors to cyclin dependent kinase 4 and 6 (CDK4/6). Overall, these findings establish a role for K19 in the regulation of GSK3β-cyclin D3 pathway and demonstrate a potential strategy for overcoming resistance to CDK4/6 inhibitors.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yan Hu ◽  
Qiongfang Yu ◽  
Yao Zhong ◽  
Wei Shen ◽  
Xiaoyan Zhou ◽  
...  

ELMO3 is a member of the engulfment and cell motility (ELMO) protein family, which plays a vital role in the process of chemotaxis and metastasis of tumor cells. However, remarkably little is known about the role of ELMO3 in cancer. The present study was conducted to investigate the function and role of ELMO3 in gastric cancer (GC) progression. The expression level of ELMO3 in gastric cancer tissues and cell lines was measured by means of real-time quantitative PCR (qPCR) and Western blot analysis. RNA interference was used to inhibit ELMO3 expression in gastric cancer cells. Then, wound-healing assays, Transwell assays, MTS assays, flow cytometry, and fluorescence microscopy were applied to detect cancer cell migration, cell invasion, cell proliferation, the cell cycle, and F-actin polymerization, respectively. The results revealed that ELMO3 expression in GC tumor tissues was significantly higher than in the paired adjacent tissues. Moreover, knockdown of ELMO3 by a specific siRNA significantly inhibited the processes of cell proliferation, invasion, metastasis, regulation of the cell cycle, and F-actin polymerization. Collectively, the results indicate that ELMO3 participates in the processes of cell growth, invasion, and migration, and ELMO3 is expected to be a potential diagnostic and prognostic marker for GC.


2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Shutao Pan ◽  
Ming Shen ◽  
Min Zhou ◽  
Xiuhui Shi ◽  
Ruizhi He ◽  
...  

AbstractDysfunction in long noncoding RNAs (lncRNAs) is reported to participate in the initiation and progression of human cancer; however, the biological functions and molecular mechanisms through which lncRNAs affect pancreatic cancer (PC) are largely unknown. Here, we report a novel lncRNA, LINC01111, that is clearly downregulated in PC tissues and plasma of PC patients and acts as a tumor suppressor. We found that the LINC01111 level was negatively correlated with the TNM stage but positively correlated with the survival of PC patients. The overexpression of LINC01111 significantly inhibited cell proliferation, the cell cycle, and cell invasion and migration in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, the knockdown of LINC01111 enhanced cell proliferation, the cell cycle, and cell invasion and migration in vitro, as well as tumorigenesis and metastasis in vivo. Furthermore, we found that high expression levels of LINC01111 upregulated DUSP1 levels by sequestering miR-3924, resulting in the blockage of SAPK phosphorylation and the inactivation of the SAPK/JNK signaling pathway in PC cells and thus inhibiting PC aggressiveness. Overall, these data reveal that LINC01111 is a potential diagnostic biomarker for PC patients, and the newly identified LINC01111/miR-3924/DUSP1 axis can modulate PC initiation and development.


2014 ◽  
Vol 42 (6) ◽  
pp. 1534-1537 ◽  
Author(s):  
Nicola Brownlow ◽  
Tanya Pike ◽  
Victoria Crossland ◽  
Jeroen Claus ◽  
Peter Parker

Cytokinesis is the final act of the cell cycle where the replicated DNA and cellular contents are finally split into two daughter cells. This process is very tightly controlled as DNA segregation errors and cytokinesis failure is commonly associated with aneuploidy and aggressive tumours. Protein kinase Cε (PKCε) is a lipid-activated serine/threonine kinase that is part of the PKC superfamily. PKCε plays a complex role in the regulation of migration, adhesion and cytokinesis and in the present article we discuss the interplay between these processes. Integrin-mediated interaction with the actin cytoskeleton is a known regulator of cell adhesion and migration and there is emerging evidence that this pathway may also be essential for cytokinesis. We discuss evidence that a known actin-binding region in PKCε is involved in PKCε-mediated regulation of cytokinesis, providing a link between integrin-mediated stabilization of the cytokinesis furrow and PKCε recruitment.


2018 ◽  
Vol 49 (1) ◽  
pp. 260-270 ◽  
Author(s):  
Bin Wang ◽  
Lei Qin ◽  
Mei Ren ◽  
Hao Sun

Background/Aims: Gastric cancer (GC) is one of the most common and lethal varieties of cancers. Anticancer activities of anti-CTLA-4 and anti-PD-1 antibodies have been explored in different cancers, including GC. The study aimed to explore the role of combination therapy with anti-CTLA-4 and anti-PD-1 antibodies in GC cells, and understand the possible underlying molecular mechanism. Methods: MKN-45 and MGC-803 cells were divided into four groups, namely control, CTLA-4, PD-1, and CTLA-4&PD-1. Cell viability, cell cycle, apoptosis, migration and invasion were measured by MTT, flow cytometry, and transwell assays, respectively. Expression levels of different mRNAs and proteins associated with apoptosis, epithelial mesenchymal transition (EMT), β-catenin, MAPK, and PI3K/AKT pathways were assessed by RT-qPCR and western blot analysis, respectively. The tumor formation in vivo was examined by tumor Xenograft model assay. Results: Combination with anti-CTLA-4 and anti-PD-1 antibodies significantly suppressed cell proliferation, induced apoptosis, as well as inhibited migration, invasion, and EMT in MKN-45 and MGC-803 cells. Western blotting revealed that combination with anti-CTLA-4 and anti-PD-1 antibodies declined the activation of β-catenin, MAPK and PI3K/AKT signal pathways. Moreover, combination of anti-CTLA-4 and anti-PD-1 antibodies inhibited tumor formation in vivo. Furthermore, the mRNA levels of CTLA-4 and PD-1 were significantly decreased in si-CTLA and si-PD-1 transfected cells, and combination with si-CTLA and si-PD-1 also suppressed cell proliferation, migration, invasion, EMT and induced apoptosis in MKN-45 cells. Conclusion: Combination therapy with anti-CTLA-4 and anti-PD-1 antibodies presented the promising outcomes in GC, although further investigations are warranted.


Sign in / Sign up

Export Citation Format

Share Document