scholarly journals Long noncoding RNA LINC01111 suppresses pancreatic cancer aggressiveness by regulating DUSP1 expression via microRNA-3924

2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Shutao Pan ◽  
Ming Shen ◽  
Min Zhou ◽  
Xiuhui Shi ◽  
Ruizhi He ◽  
...  

AbstractDysfunction in long noncoding RNAs (lncRNAs) is reported to participate in the initiation and progression of human cancer; however, the biological functions and molecular mechanisms through which lncRNAs affect pancreatic cancer (PC) are largely unknown. Here, we report a novel lncRNA, LINC01111, that is clearly downregulated in PC tissues and plasma of PC patients and acts as a tumor suppressor. We found that the LINC01111 level was negatively correlated with the TNM stage but positively correlated with the survival of PC patients. The overexpression of LINC01111 significantly inhibited cell proliferation, the cell cycle, and cell invasion and migration in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, the knockdown of LINC01111 enhanced cell proliferation, the cell cycle, and cell invasion and migration in vitro, as well as tumorigenesis and metastasis in vivo. Furthermore, we found that high expression levels of LINC01111 upregulated DUSP1 levels by sequestering miR-3924, resulting in the blockage of SAPK phosphorylation and the inactivation of the SAPK/JNK signaling pathway in PC cells and thus inhibiting PC aggressiveness. Overall, these data reveal that LINC01111 is a potential diagnostic biomarker for PC patients, and the newly identified LINC01111/miR-3924/DUSP1 axis can modulate PC initiation and development.

Author(s):  
Jiewei Lin ◽  
Shuyu Zhai ◽  
Siyi Zou ◽  
Zhiwei Xu ◽  
Jun Zhang ◽  
...  

Abstract Background FLVCR1-AS1 is a key regulator of cancer progression. However, the biological functions and underlying molecular mechanisms of pancreatic cancer (PC) remain unknown. Methods FLVCR1-AS1 expression levels in 77 PC tissues and matched non-tumor tissues were analyzed by qRT-PCR. Moreover, the role of FLVCR1-AS1 in PC cell proliferation, cell cycle, and migration was verified via functional in vitro and in vivo experiments. Further, the potential competitive endogenous RNA (ceRNA) network between FLVCR1-AS1 and KLF10, as well as FLVCR1-AS1 transcription levels, were investigated. Results FLVCR1-AS1 expression was low in both PC tissues and PC cell lines, and FLVCR1-AS1 downregulation was associated with a worse prognosis in patients with PC. Functional experiments demonstrated that FLVCR1-AS1 overexpression significantly suppressed PC cell proliferation, cell cycle, and migration both in vitro and in vivo. Mechanistic investigations revealed that FLVCR1-AS1 acts as a ceRNA to sequester miR-513c-5p or miR-514b-5p from the sponging KLF10 mRNA, thereby relieving their suppressive effects on KLF10 expression. Additionally, FLVCR1-AS1 was shown to be a direct transcriptional target of KLF10. Conclusions Our research suggests that FLVCR1-AS1 plays a tumor-suppressive role in PC by inhibiting proliferation, cell cycle, and migration through a positive feedback loop with KLF10, thereby providing a novel therapeutic strategy for PC treatment.


2021 ◽  
pp. 1-9
Author(s):  
Huan Guo ◽  
Baozhen Zeng ◽  
Liqiong Wang ◽  
Chunlei Ge ◽  
Xianglin Zuo ◽  
...  

BACKGROUND: The incidence of lung cancer in Yunnan area ranks firstly in the world and underlying molecular mechanisms of lung cancer in Yunnan region are still unclear. We screened a novel potential oncogene CYP2S1 used mRNA microassay and bioinformation database. The function of CYP2S1 in lung cancer has not been reported. OBJECTIVE: To investigate the functions of CYP2S1 in lung cancer. METHODS: Immunohistochemistry and Real-time PCR were used to verify the expression of CYP2S1. Colony formation and Transwell assays were used to determine cell proliferation, invasion and migration. Xenograft assays were used to detected cell growth in vivo. RESULTS: CYP2S1 is significantly up-regulated in lung cancer tissues and cells. Knockdown CYP2S1 in lung cancer cells resulted in decrease cell proliferation, invasion and migration in vitro. Animal experiments showed downregulation of CYP2S1 inhibited lung cancer cell growth in vivo. GSEA analysis suggested that CYP2S1 played functions by regulating E2F targets and G2M checkpoint pathway which involved in cell cycle. Kaplan-Meier analysis indicated that patients with high CYP2S1 had markedly shorter event overall survival (OS) time. CONCLUSIONS: Our data demonstrate that CYP2S1 exerts tumor suppressor function in lung cancer. The high expression of CYP2S1 is an unfavorable prognostic marker for patient survival.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Hongzhang Shen ◽  
Fuqiang Ye ◽  
Dongchao Xu ◽  
Liangliang Fang ◽  
Xiaofeng Zhang ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy worldwide. As metastasis and malignant progression are primarily responsible for the poor clinical outcomes of PDAC, identifying key genes involved in these processes and the underlying molecular mechanisms of PDAC is vital. In this study, by analyzing TCGA PDAC data and matched GTEx data, we found that MYEOV expression is associated with poor survival in PDAC patients and higher in carcinoma tissues than in healthy tissues. Elevated levels of MYEOV led to enhanced cell proliferation, invasion and migration in vitro and in vivo. Transcriptome analysis results revealed that MYEOV mediates global alterations in gene expression profiles in PDAC cells. MiRNA-seq analysis showed that MYEOV regulates the expression levels of miR-17-5p and miR-93-5p, and its depletion resulted in reduced cell proliferation, invasion and migration, as observed in MYEOV-knockdown PDAC cells. These effects are likely due to the ability of MYEOV to regulate enrichment of the transcription factor MYC at the gene promoter regions of the two miRNAs. Furthermore, we identified a complex containing MYEOV and MYC in the nucleus, providing additional evidence for the association of MYEOV with MYC. Taken together, our results suggest that MYEOV promotes oncogenic miR-17/93-5p expression by associating with MYC, contributing to PDAC progression.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ethan P. Metz ◽  
Erin L. Wuebben ◽  
Phillip J. Wilder ◽  
Jesse L. Cox ◽  
Kaustubh Datta ◽  
...  

Abstract Background Quiescent tumor cells pose a major clinical challenge due to their ability to resist conventional chemotherapies and to drive tumor recurrence. Understanding the molecular mechanisms that promote quiescence of tumor cells could help identify therapies to eliminate these cells. Significantly, recent studies have determined that the function of SOX2 in cancer cells is highly dose dependent. Specifically, SOX2 levels in tumor cells are optimized to promote tumor growth: knocking down or elevating SOX2 inhibits proliferation. Furthermore, recent studies have shown that quiescent tumor cells express higher levels of SOX2 compared to adjacent proliferating cells. Currently, the mechanisms through which elevated levels of SOX2 restrict tumor cell proliferation have not been characterized. Methods To understand how elevated levels of SOX2 restrict the proliferation of tumor cells, we engineered diverse types of tumor cells for inducible overexpression of SOX2. Using these cells, we examined the effects of elevating SOX2 on their proliferation, both in vitro and in vivo. In addition, we examined how elevating SOX2 influences their expression of cyclins, cyclin-dependent kinases (CDKs), and p27Kip1. Results Elevating SOX2 in diverse tumor cell types led to growth inhibition in vitro. Significantly, elevating SOX2 in vivo in pancreatic ductal adenocarcinoma, medulloblastoma, and prostate cancer cells induced a reversible state of tumor growth arrest. In all three tumor types, elevation of SOX2 in vivo quickly halted tumor growth. Remarkably, tumor growth resumed rapidly when SOX2 returned to endogenous levels. We also determined that elevation of SOX2 in six tumor cell lines decreased the levels of cyclins and CDKs that control each phase of the cell cycle, while upregulating p27Kip1. Conclusions Our findings indicate that elevating SOX2 above endogenous levels in a diverse set of tumor cell types leads to growth inhibition both in vitro and in vivo. Moreover, our findings indicate that SOX2 can function as a master regulator by controlling the expression of a broad spectrum of cell cycle machinery. Importantly, our SOX2-inducible tumor studies provide a novel model system for investigating the molecular mechanisms by which elevated levels of SOX2 restrict cell proliferation and tumor growth.


2020 ◽  
Vol 318 (5) ◽  
pp. C903-C912 ◽  
Author(s):  
Shuai Wu ◽  
Han Chen ◽  
Ling Zuo ◽  
Hai Jiang ◽  
Hongtao Yan

This study explored the effects of the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on the development of uveal melanoma. Moreover, the role of the MALAT1/microRNA-608 (miR-608)/homeobox C4 (HOXC4) axis was assessed by evaluating the proliferation, invasion, and migration, as well as the cell cycle distribution of uveal melanoma in vitro after knocking down MALAT1 or HOXC4 and/or overexpression of miR-608 in uveal melanoma cells (MUM-2B and C918). Moreover, the effects of the MALAT1/miR-608/HOXC4 axis in uveal melanoma in vivo were further evaluated by injecting the C918 cells into the NOD/SCID mice. HOXC4 was found to be a gene upregulated in uveal melanoma, while knockdown of its expression resulted in suppression of uveal melanoma cell migration, proliferation, and invasion, as well as cell cycle progression. In addition, the upregulation of miR-608 reduced the expression of HOXC4 in the uveal melanoma cells, which was rescued by overexpression of MALAT1. Hence, MALAT1 could upregulate the HOXC4 by binding to miR-608. The suppressed progression of uveal melanoma in vitro by miR-608 was rescued by overexpression of MALAT1. Additionally, in vivo assays demonstrated that downregulation of MALAT1 could suppress tumor growth through downregulation of HOXC4 expression via increasing miR-608 in uveal melanoma. In summary, MALAT1 downregulation functions to restrain the development of uveal melanoma via miR-608-mediated inhibition of HOXC4.


2020 ◽  
Author(s):  
Yeting Hong ◽  
Wei He ◽  
Jianbin Zhang ◽  
Lu Shen ◽  
Chong Yu ◽  
...  

Abstract Background: Cyclin D3-CDK6 complex is a component of the core cell cycle machinery that regulates cell proliferation. By using Human Protein Atlas database, a higher expression level of this complex was found in gastric cancer. However, the function of this complex in gastric cancer remain poorly understood. This study aims to determine the expression pattern of this complex in gastric cancer and to investigate its biological role during tumorigenesis.Methods: To demonstrate that Cyclin D3-CDK6 regulate the c-Myc/miR-15a/16 axis in a feedback loop in gastric cancer, a series of methods were conducted both in vitro and in vivo experiments, including qRT-PCR, western blot analysis, EdU assay, flow cytometry, luciferase reporter assay and immunohistochemical staining. SPSS and Graphpad prism software were used for data analysis.Results: In this study, we found that Cyclin D3 and CDK6 were significantly upregulated in gastric cancer and correlated with poorer overall survival. Further study proved that this complex significantly promoted cell proliferation and cell cycle progression in vitro and accelerated xenografted tumor growth in vivo. Furthermore, we explored the molecular mechanisms through which the complex mediated Rb phosphorylation and then promoted c-Myc expression in vitro, we also found c-Myc could suppress miR-15a/16 expression in gastric cancer cell. Finally, we found that miR-15a/16 can simultaneously regulate Cyclin D3 and CDK6 expression as direct target genes.Conclusions: Our findings uncover the Cyclin D3-CDK6/c-Myc/miR-15a/16 feedback loop axis as a pivotal role in the regulation of gastric cancer tumorigenesis, and this regulating axis may provide a potential therapeutic target for gastric cancer treatment.


Author(s):  
Xiali Tang ◽  
Ying Zheng ◽  
Demin Jiao ◽  
Jun Chen ◽  
Xibang Liu ◽  
...  

Background: Small Cell Lung Cancer (SCLC) represents the most aggressive pulmonary neoplasm and is often diagnosed at late stage with limited survival, despite combined chemotherapies. The purpose of this study was to investigate the effect of anlotinib on SCLC and the potential molecular mechanisms. Methods: Cell viability was assessed by CCK-8 assay to determine the adequate concentration of anlotinib. Then, effects of anlotinib on cell apoptosis, cell cycle distribution, migration and invasion were analyzed by flow cytometry, PI staining, wound healing assay and transwell assay, respectively. The protein expression of c-met and ERK1/2 pathways in H446 cells were assessed by western blot analysis. Result: In this study, we found that anlotinib significantly reduced the cell viability of H446 cells, induced G2/M cell cycle arrest and decreased invasion and migration of H446 cells. Futhermore, we also found that anlotinib could suppress c-met signal transduction and activate the ERK1/2 pathway in H446 cells. More importantly, c-met was involved in the effects of anlotinib on migration and invasion in H446 cells. Conclusion: Taken together, our results demonstrated that anlotinib was a potential anticancer agent that inhibited cell proliferation, migration and invasion via suppression of the c-met pathway and activation of the ERK1/2 pathway in H446 cells.


2020 ◽  
Vol 20 (10) ◽  
pp. 1197-1208
Author(s):  
Zhuo Ma ◽  
Kai Li ◽  
Peng Chen ◽  
Qizheng Pan ◽  
Xuyang Li ◽  
...  

Background: Osteosarcoma (OS) is a prevalent primary bone malignancy and its distal metastasis remains the main cause of mortality in OS patients. MicroRNAs (miRNAs) play critical roles during cancer metastasis. Objective: Thus, elucidating the role of miRNA dysregulation in OS metastasis may provide novel therapeutic targets. Methods: The previous study found a low miR-134 expression level in the OS specimens compared with paracancer tissues. Overexpression of miR-134 stable cell lines was established. Cell viability assay, cell invasion and migration assay and apoptosis assay were performed to evaluate the role of miR-134 in OS in vitro. Results: We found that miR-134 overexpression inhibits cell proliferation, migration and invasion, and induces cell apoptosis in both MG63 and Saos-2 cell lines. Mechanistically, miR-134 targets the 3'-UTR of VEGFA and MYCN mRNA to silence its translation, which was confirmed by luciferase-reporter assay. The real-time PCR analysis illustrated that miR-134 overexpression decreases VEGFA and MYCN mRNA levels. Additionally, the overexpression of VEGFA or MYCN can partly attenuate the effects of miR-134 on OS cell migration and viability. Furthermore, the overexpression of miR-134 dramatically inhibits tumor growth in the human OS cell line xenograft mouse model in vivo. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-134 is regulated by Interferon Regulatory Factor (IRF1), which binds to its promoter and activates miR-134 expression. Conclusion: Our study demonstrates that IRF1 is a key player in the transcriptional control of miR-134, and it inhibits cell proliferation, invasion and migration in vitro and in vivo via targeting VEGFA and MYCN.


2013 ◽  
Vol 37 (8) ◽  
pp. 849-854 ◽  
Author(s):  
Zhao-Yong Tang ◽  
Yang Liu ◽  
Long-Xing Liu ◽  
Xiao-Yan Ding ◽  
Hong Zhang ◽  
...  

2020 ◽  
Author(s):  
Mingliang Zhang ◽  
Weigang Dai ◽  
Zhanyu Li ◽  
Liang Tang ◽  
Jianhui Chen ◽  
...  

Abstract Background: Colorectal cancer (CRC) is the third most common cancer worldwide and the fourth most common cause of cancer death. The heat shock 70kDa protein 4 (HSPA4) participate in progression and development of cancers. However, the cellular functions, potential molecular mechanisms of HSPA4 in CRC are still largely unknown. Methods: In this study, qRT-PCR and Western Blot were used to identify the constructed HSPA4 knockdown cell lines, which was further used to construct mouse xenotransplantation models. Effects of HSPA4 knockdown on cell proliferation, apoptotic, cell cycle and migration of CRC were examined using Celigo cell counting assay, Flow cytometry, wound healing assay and Transwell assay, respectively. In addition, Human Apoptosis Antibody Array was performed to explore downstream molecular mechanism of HSPA4 in CRC cells. Results: HSPA4 was overexpressed in CRC, which was positively associated with lymphatic metastasis (N value), number of Lymph node. In addition, high expression of HSPA4 predicted poor prognosis of patients with CRC. Furthermore, HSPA4 knockdown inhibit proliferation, migration, promote apoptosis, and arrest cell cycle of CRC cells in vitro. Moreover, in vivo results supported HSPA4 knockdown inhibit tumor growth. Additionally, the induction of apoptosis of CRC cells by HSPA4 knockdown required the participation of a series of apoptosis-related proteins. The downregulation of HSPA4 promoted the progression of CRC cells, which resulted in alterations of PI3K/Akt, CCND1 and CDK6 in downstream signaling pathways. Conclusions: In sum, the downregulation of HSPA4 promoted CRC and may be a potential target for molecular therapy.


Sign in / Sign up

Export Citation Format

Share Document