scholarly journals Removal of Ibuprofen From Synthetic Wastewater Using Photocatalytic Method in the Presence of Feo Photocatalyst Supported on Modified Iranian Clinoptilolite

Author(s):  
Majid Mohadesi ◽  
Ashkan Gouran ◽  
Kiarash Seifi

Abstract This study investigated the removal of an organic drug called ibuprofen from the wastewater containing this drug. Iron oxide supported on modified Iranian clinoptilolite was used as the photocatalyst in the presence of the light of a solar lamp. XRD, SEM, EDAX and FT-IR analyses were performed to detect the prepared photocatalyst. The results of photocatalytic identification analyses proved the suitable loading of iron oxide supported on modified Iranian clinoptilolite. This study investigated the effect of initial concentration of ibuprofen (5–25 mg/L), photocatalyst concentration (100–300 mg/L), and process time (10–240 min) on the removal from ibuprofen from wastewater containing this drug. The experiments were performed in a setup in the presence of a solar lamp with a flux of 300 W/m2. The results indicated that with the initial ibuprofen concentration of 25 mg/L, photocatalyst concentration of 300 mg/L, and time of 210 min, the highest percentage of ibuprofen removal was 99.80%. Kinetic modeling was then performed using the Langmuir-Hinshelwood model, and a quasi-first-order kinetic model showed a good agreement with the results obtained. Finally, the recovery of the photocatalyst was investigated and the results showed that under optimal conditions about 91% of ibuprofen was removed after five re-uses of the photocatalyst.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Li Yu ◽  
Yongkui Huang ◽  
Yun Yang ◽  
Yulin Xu ◽  
Guohong Wang ◽  
...  

H4SiW6Mo6O40/SiO2was sensitized by H2O2solution that significantly improved its catalytic activity under simulated natural light. Degradation of basic fuchsin was used as a probe reaction to explore the influencing factors on the photodegradation reaction. The results showed that the optimal conditions were as follows: initial concentration of basic fuchsin 8 mg/L, pH 2.5, catalyst dosage 4 g/L, and light irradiation time 4 h. Under these conditions, the degradation rate of basic fuchsin is 98%. The reaction of photocatalysis for basic fuchsin can be expressed as the first-order kinetic model. After being used continuously for four times, the catalyst kept the inherent photocatalytic activity for degradation of dyes. The photodegradation of malachite green, methyl orange, methylene blue, and rhodamine B were also tested, and the degradation rate of dyes can reach 90%–98%.


2013 ◽  
Vol 709 ◽  
pp. 70-73
Author(s):  
Guo Bin Duan ◽  
Yong Kui Huang ◽  
Li Yu ◽  
Shui Jin Yang

H3PW6Mo6O40/SiO2 was prepared by sol-gel method, and sensitized by H2O2 solution. The photocatalytic degradation of methyl violet by H3PW6Mo6O40/SiO2 under simulated natural light irradiation was investigated. The results demonstrated that at optimal condition (initial concentration of methyl violet is 10 mg/L, and the pH is 2.5, the dosage of catalyst is 0.5% based on feed stocks), the degradation rate of methyl violet is as high as 88.7 % after 2.5h simulated natural light irradiation. The reaction of photocatalysis for methyl violet can be expressed as first-order kinetic model.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Samira Norzaee ◽  
Edris Bazrafshan ◽  
Babak Djahed ◽  
Ferdos Kord Mostafapour ◽  
Razieh Khaksefidi

Penicillin G (PG) is one of the most widely consumed antibiotics around the world. Release of PG in environment may lead to contamination of water resources. The aim of the present work is to assess feasibility of applying UV-activated persulfate process in removal of PG from aquatic environments. The study examined the effect of pH (3–11), persulfate initial concentration (0.5–3 mM), reaction time (15–90 minutes), and initial concentration of PG (0.02–0.14 mM) on PG decomposition. Also, the pseudo-first-order kinetic model was used for kinetic analysis of PG removal. The results indicated that UV-activated persulfate process can effectively eliminate PG from water. The highest PG removal efficiency was obtained as 94.28% at pH 5, and the decomposition percentage was raised by increasing persulfate dose from 0.5 to 3 mM and the reaction time from 15 to 90 minutes. Besides, the removal efficiency decreased through increasing the initial concentration of PG. UV-activated persulfate process effectively decomposes PG and eliminates it from water.


2019 ◽  
Vol 80 (3) ◽  
pp. 587-596
Author(s):  
Mohammad Malakootian ◽  
Mohammad Ahmadian

Abstract The aim of this study was to determine the removal of ciprofloxacin (CIP) by the electro-persulfate (EC-PS) process using aluminum (Al) electrodes. The effects of variables including pH, contact time, PS concentration, initial CIP concentration and current density on the removal efficiency of CIP were studied. In order to determine the mechanisms of the EC-PS process, the radical scavenger tests, as well as energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FT-IR) were performed on the sludge. The results showed that the PS process alone had no effect on the CIP removal, and the EC process alone could remove 25% of CIP after 160 min. However, the EC-PS process under the optimum conditions: pH of 7, time of 40 min, current density of 2.75 mA/cm2, CIP concentration of 20 mg/L, and PS concentration of 0.84 mM removed 90% of CIP. The effect of the EC-PS process on the actual hospital wastewater was 81% in optimal conditions. The kinetic study also showed that the second-order kinetic model was the most consistent. The oxidation process during the initial contact was dominant in the EC-PS process and, over time, the EC process was dominant for CIP removal.


2021 ◽  
Vol 12 (1) ◽  
pp. 326-338

In this study, the retention of BB41 and SAF was studied using a PBD three-level screening plan, as the initial concentration of dyes, BBP mass, pH, and temperature. Pareto analysis to select the pH and the adsorbent mass as influential factors to make a CCD optimization plan, the optimization has established a quadratic mathematical model for each dye. The binary system's common optimal conditions were selected to be a BBP mass of 0.46 g/l and a pH of 8.54. Under optimal conditions, the removal efficiency of BB41 and SAF is 83.76 and 73.23%, respectively, with the desirability of 1.00, which is confirmed by a later experiment. The equilibrium adsorption data of BB41 and SAF in the mixture are well explained by the Langmuir isotherm with an adsorption capacity of 75.18 and 80.64 mg/g, respectively. A good fit of the experimental data according to the pseudo-second-order kinetic model, with a correlation coefficient R2> 0.99. Finally, Bombax buonopozense (BBP) was characterized using FTIR, SEM and elemental analysis.


2018 ◽  
Vol 21 (8) ◽  
pp. 583-593 ◽  
Author(s):  
Sara Rahnama ◽  
Shahab Shariati ◽  
Faten Divsar

Objective: In this research, a novel magnetite titanium dioxide nanocomposite functionalized by amine groups (Fe3O4@SiO2@TiO2-NH2) was synthesized and its ability for efficient removal of Acid Fuchsine as an anionic dye from aqueous solutions was investigated. Method: The core-shell structure of Fe3O4@SiO2@TiO2 was prepared using Fe3O4 as magnetic core, tetra ethyl orthosilicate as silica and tetra butyl titanate as titanium source for shell. The synthesized nanocomposites (particle size lower than 44 nm) were characterized by FT-IR, XRD, DRS, SEM and TGA instruments. The various experimental parameters affecting dye removal efficiency were investigated and optimized using Taguchi fractional factorial design. Results: The synthesized adsorbent showed the highest removal efficiency of Acid Fuchsine (99 %) at pH= 3.5, without salt addition and during stirring at contact times less than 10 minutes. The study of kinetic models at two concentration levels showed the fast dye sorption on the surface of proposed nanocomposites with pseudo second order kinetic model (R2=1). Also, the fitting of Acid Fuchsine sorption data to Freundlich, Langmuir and Temkin isotherms suggested that Freundlich model gave a better fitting than other models (R2=0.9936, n=2). Conclusion: Good chemical stability, excellent magnetic properties, very fast adsorption kinetics and high removal efficiency make the synthesized nanocomposite as a proper recoverable sorbent for removal of Acid Fuchsine dye from wastewaters.


2012 ◽  
Vol 8 (3) ◽  
Author(s):  
Xiaoyan Dai ◽  
Chenhuan Yu ◽  
Qiaofeng Wu

Abstract Jiangpo is an increasingly popular East Asian spice which is made from Mangnolia officinalis bark and ginger juice. Since it induces bioactive compounds decomposition and has influence on final flavor and fragrance, cooking is regarded as the key operation in preparation of Jiangpo. To evaluate the bioactive compounds content changes of Jiangpo during thermal processing, kinetic parameters including reaction order, rate constant, T1/2 and activation energy of bioactive markers namely honokiol, magnolol and curcumin were determined. Cooking was set at temperatures 60, 90 and 120 °C for selected time intervals. Results displayed the thermal kinetic characteristics of the three compounds. Thermal degradation of Honokiol and magnolol both followed first order kinetic model and the loss of curcumin fitted second order. A mathematical model based on the obtained kinetic parameters has also been developed to predict the degradation of honokiol, magnolol and curcumin in non-isothermal state. All the information in this paper could contribute necessary information for optimizing the existing heat processing of Jiangpo.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mohammad Ahmadian ◽  
Sohyla Reshadat ◽  
Nader Yousefi ◽  
Seyed Hamed Mirhossieni ◽  
Mohammad Reza Zare ◽  
...  

Due to complex composition of leachate, the comprehensive leachate treatment methods have been not demonstrated. Moreover, the improper management of leachate can lead to many environmental problems. The aim of this study was application of Fenton process for decreasing the major pollutants of landfill leachate on Kermanshah city. The leachate was collected from Kermanshah landfill site and treated by Fenton process. The effect of various parameters including solution pH, Fe2+and H2O2dosage, Fe2+/H2O2molar ratio, and reaction time was investigated. The result showed that with increasing Fe2+and H2O2dosage, Fe2+/H2O2molar ratio, and reaction time, the COD, TOC, TSS, and color removal increased. The maximum COD, TOC, TSS, and color removal were obtained at low pH (pH: 3). The kinetic data were analyzed in term of zero-order, first-order, and second-order expressions. First-order kinetic model described the removal of COD, TOC, TSS, and color from leachate better than two other kinetic models. In spite of extremely difficulty of leachate treatment, the previous results seem rather encouraging on the application of Fenton’s oxidation.


2012 ◽  
Vol 11 (02) ◽  
pp. 1250019 ◽  
Author(s):  
RAJESH KUMAR ◽  
S. K. JAIN

This study was carried out to evaluate the environmental application of functionalized carbon nanotubes through the experimental removal of strontium (II) from water. The aim was to find the optimal condition for the removal of strontium from water under different conditions such as initial concentration of strontium, contact time and neutral pH. The functionalized multi wall carbon nanotubes (f-MWCNT) were characterized by FT-IR and scanning electron microscopy (SEM). The adsorption isotherms were correlated to Freundlich and Langmuir models and it was found that the adsorption data could be fitted better by Langmuir model than Freundlich one. The kinetic data shows that the adsorption describes well with the pseudo-second order kinetic model. Functionalized MWCNT can be used as good adsorbent for the removal of the strontium ions from polluted water according to results.


2021 ◽  
pp. 2151037
Author(s):  
Yu Meng ◽  
Qing Zhong ◽  
Arzugul Muslim

Because −NH2 and −NH− in poly-[Formula: see text]-phenylenediamine (P[Formula: see text]PD) can interact strongly with the empty orbitals of Cu to show unique electrochemical activity, P[Formula: see text]PD is suitable for the removal of Cu[Formula: see text] by electrochemical oxidation–reduction process. In this study, with P[Formula: see text]PD and its carbon dot composite (CDs/P[Formula: see text]PD) as working electrodes, the electrochemical reduction and removal of Cu[Formula: see text] in the aqueous solution were carried out with the potentiostatic method. According to effects of voltage, pH of the solution, initial concentration of Cu[Formula: see text], and electrochemical reduction time on the Cu[Formula: see text] removal, the Cu[Formula: see text] removal ratios of P[Formula: see text]PD and CDs/P[Formula: see text]PD were up to 64.69% and 73.34%, respectively, at −0.2 V and the optimal pH. Additionally, results showed that these processes were in line with the quasi-first order kinetic model. Both P[Formula: see text]PD and CDs/P[Formula: see text]PD showed good reproducibility in six cycles. After five times of repeated usage, the regeneration efficiencies of P[Formula: see text]PD and CDs/P[Formula: see text]PD dropped to 77.04% and 79.36%, respectively.


Sign in / Sign up

Export Citation Format

Share Document