scholarly journals Air Pollution-Regulated E-Cadherin Mediates Contact Inhibition of Proliferation via the Hippo Signaling Pathways in Emphysema

Author(s):  
Jer-Hwa Chang ◽  
Yueh-Lun Lee ◽  
Vincent Laiman ◽  
Chia-Li Han ◽  
Yu-Teng Jheng ◽  
...  

Abstract Background: Air pollution has been linked to emphysema in chronic obstruction pulmonary disease (COPD). However, the underlying mechanisms in the development of emphysema due to air pollution remain unclear. The objective of this study was to investigate the role of components of the Hippo signaling pathway for E-cadherin-mediated contact inhibition of proliferation in the lungs after air pollution exposure. E-Cadherin-mediated contact inhibition of proliferation via the Hippo signaling pathway was investigated in Sprague-Dawley (SD) rats whole-body exposed to air pollution, and in alveolar epithelial A549 cells exposed to diesel exhaust particles (DEPs), E-cadherin-knockdown, and high-mobility group box 1 (HMGB1) treatment. Underlying epithelial differentiation, apoptosis, and senescence were also examined, and the interaction network among these proteins was examined. COPD lung sections were used to confirm the observations in rats. Results: Expressions of HMGB1 and E-cadherin were negatively regulated in the lungs and A549 cells by air pollution, and this was confirmed by knockdown of E-cadherin and by treating A549 cells with HMGB1. Depletion of phosphorylated (p)-Yap occurred after exposure to air pollution and E-cadherin-knockdown, which resulted in decreases of SPC and T1α. Exposure to air pollution and E-cadherin-knockdown respectively downregulated p-Sirt1 and increased p53 levels in the lungs and in A549 cells. Moreover, the protein interaction network suggested that E-cadherin is a key activator in regulating Sirt1 and p53, as well as alveolar epithelial cell differentiation by SPC and T1α. Consistently, downregulation of E-cadherin, p-Yap, SPC, and T1α was observed in COPD alveolar regions with particulate matter (PM) deposition. Conclusions: Our results indicated that E-cadherin-mediated cell-cell contact directly regulates the Hippo signaling pathway to control differentiation, cell proliferation, and senescence due to air pollution. Exposure to air pollution may initiate emphysema in COPD patients.

2020 ◽  
Author(s):  
Shandong Yu ◽  
Jinyu Yu ◽  
Yong Guo ◽  
Yanpeng Chu ◽  
Heping Zhang

AbstractBackgroundAtrial fibrillation (AF) is the most prevalent tachycardia. The major injuries caused by AF are systemic embolism and heart failure. Although AF therapies have evolved substantially in recent years, the success rate of sinus rhythm maintenance is relatively low. The reason is the incomplete understanding of the AF mechanisms.Material and methodIn this study, profiles were downloaded from the GEO database (GSE79762). Bioinformatic analysis was used to identify differentially expressed genes (DEGs). GO analysis and KEGG analysis were performed to identify the most enriched terms and pathways. A protein-protein interaction network was constructed to determine regulatory genes. Key modules and hub genes were identified by MOCDE and cytoHubba. Transcription factors (TFs) were predicted by PASTAA.ResultsSeventy-seven up-regulated DEGs and 236 downregulated DEGs were identified. In the GO biological process, cellular components, and molecular function analysis, positive regulation of cell migration, anchoring junction and cell adhesion molecule binding were the most significant enrichment terms. The Hippo signaling pathway was the most significantly enriched pathway. In the PPI network analysis, we found that Class A/1 (rhodopsin-like receptors) may be the critical module in AF. Ten hub genes were extracted, including 4 upregulated genes and 6 downregulated genes. CXCR2, TLR4 and CXCR4 may play critical roles in AF. In TF prediction, we found that Irf-1 may be implicated in AF.ConclusionOur study found that the CXCR4, TLR4, CXCR2; Hippo signaling pathway; and class A/1 (rhodopsin-like receptors) modules may play critical roles in AF occurrence and maintenance. This may provide novel targets for AF treatment.


Author(s):  
Xuehui Wang ◽  
Changle Ji ◽  
Jiashu Hu ◽  
Xiaochong Deng ◽  
Wenfang Zheng ◽  
...  

Abstract Background Circular RNAs (circRNAs), a novel class of endogenous RNAs, have shown to participate in the development of breast cancer (BC). Hsa_circ_0005273 is a circRNA generated from several exons of PTK2. However, the potential functional role of hsa_circ_0005273 in BC remains largely unknown. Here we aim to evaluate the role of hsa_circ_0005273 in BC. Methods The expression level of hsa_circ_0005273 and miR-200a-3p were examined by RT-qPCR in BC tissues and cell lines. The effect of knocking down hsa_circ_0005273 in BC cell lines were evaluated by examinations of cell proliferation, migration and cell cycle. In addition, xenografts experiment in nude mice were performed to evaluate the effect of hsa_circ_0005273 in BC. RNA immunoprecipitation assay, RNA probe pull-down assay, luciferase reporter assay and fluorescence in situ hybridization were conducted to confirm the relationship between hsa_circ_0005273, miR-200a-3p and YAP1. Results Hsa_circ_0005273 is over-expressed in BC tissues and cell lines, whereas miR-200a-3p expression is repressed. Depletion of hsa_circ_0005273 inhibited the progression of BC cells in vitro and in vivo, while overexpression of hsa_circ_0005273 exhibited the opposite effect. Importantly, hsa_circ_0005273 upregulated YAP1 expression and inactivated Hippo pathway via sponging miR-200a-3p to promote BC progression. Conclusions Hsa_circ_0005273 regulates the miR-200a-3p/YAP1 axis and inactivates Hippo signaling pathway to promote BC progression, which may become a potential biomarker and therapeutic target.


2021 ◽  
Vol 22 (2) ◽  
pp. 931
Author(s):  
Jihyun Lee ◽  
Yujin Jung ◽  
Seo won Jeong ◽  
Ga Hee Jeong ◽  
Gue Tae Moon ◽  
...  

The Hippo signaling pathway plays a key role in regulating organ size and tissue homeostasis. Hippo and two of its main effectors, yes-associated protein (YAP) and WWTR1 (WW domain-containing transcription regulator 1, commonly listed as TAZ), play critical roles in angiogenesis. This study investigated the role of the Hippo signaling pathway in the pathogenesis of rosacea. We performed immunohistochemical analyses to compare the expression levels of YAP and TAZ between rosacea skin and normal skin in humans. Furthermore, we used a rosacea-like BALB/c mouse model induced by LL-37 injections to determine the roles of YAP and TAZ in rosacea in vivo. We found that the expression levels of YAP and TAZ were upregulated in patients with rosacea. In the rosacea-like mouse model, we observed that the clinical features of rosacea, including telangiectasia and erythema, improved after the injection of a YAP/TAZ inhibitor. Additionally, treatment with a YAP/TAZ inhibitor reduced the expression levels of YAP and TAZ and diminished vascular endothelial growth factor (VEGF) immunoreactivity in the rosacea-like mouse model. Our findings suggest that YAP/TAZ inhibitors can attenuate angiogenesis associated with the pathogenesis of rosacea and that both YAP and TAZ are potential therapeutic targets for patients with rosacea.


2015 ◽  
Vol 57 (4) ◽  
pp. 341-351 ◽  
Author(s):  
Shinichi Hayashi ◽  
Hitoshi Yokoyama ◽  
Koji Tamura

Sign in / Sign up

Export Citation Format

Share Document