Roles of Hippo signaling pathway in size control of organ regeneration

2015 ◽  
Vol 57 (4) ◽  
pp. 341-351 ◽  
Author(s):  
Shinichi Hayashi ◽  
Hitoshi Yokoyama ◽  
Koji Tamura
Fly ◽  
2009 ◽  
Vol 3 (1) ◽  
pp. 68-73 ◽  
Author(s):  
Lei Zhang ◽  
Tao Yue ◽  
Jin Jiang

Author(s):  
Xuehui Wang ◽  
Changle Ji ◽  
Jiashu Hu ◽  
Xiaochong Deng ◽  
Wenfang Zheng ◽  
...  

Abstract Background Circular RNAs (circRNAs), a novel class of endogenous RNAs, have shown to participate in the development of breast cancer (BC). Hsa_circ_0005273 is a circRNA generated from several exons of PTK2. However, the potential functional role of hsa_circ_0005273 in BC remains largely unknown. Here we aim to evaluate the role of hsa_circ_0005273 in BC. Methods The expression level of hsa_circ_0005273 and miR-200a-3p were examined by RT-qPCR in BC tissues and cell lines. The effect of knocking down hsa_circ_0005273 in BC cell lines were evaluated by examinations of cell proliferation, migration and cell cycle. In addition, xenografts experiment in nude mice were performed to evaluate the effect of hsa_circ_0005273 in BC. RNA immunoprecipitation assay, RNA probe pull-down assay, luciferase reporter assay and fluorescence in situ hybridization were conducted to confirm the relationship between hsa_circ_0005273, miR-200a-3p and YAP1. Results Hsa_circ_0005273 is over-expressed in BC tissues and cell lines, whereas miR-200a-3p expression is repressed. Depletion of hsa_circ_0005273 inhibited the progression of BC cells in vitro and in vivo, while overexpression of hsa_circ_0005273 exhibited the opposite effect. Importantly, hsa_circ_0005273 upregulated YAP1 expression and inactivated Hippo pathway via sponging miR-200a-3p to promote BC progression. Conclusions Hsa_circ_0005273 regulates the miR-200a-3p/YAP1 axis and inactivates Hippo signaling pathway to promote BC progression, which may become a potential biomarker and therapeutic target.


2021 ◽  
Vol 22 (2) ◽  
pp. 931
Author(s):  
Jihyun Lee ◽  
Yujin Jung ◽  
Seo won Jeong ◽  
Ga Hee Jeong ◽  
Gue Tae Moon ◽  
...  

The Hippo signaling pathway plays a key role in regulating organ size and tissue homeostasis. Hippo and two of its main effectors, yes-associated protein (YAP) and WWTR1 (WW domain-containing transcription regulator 1, commonly listed as TAZ), play critical roles in angiogenesis. This study investigated the role of the Hippo signaling pathway in the pathogenesis of rosacea. We performed immunohistochemical analyses to compare the expression levels of YAP and TAZ between rosacea skin and normal skin in humans. Furthermore, we used a rosacea-like BALB/c mouse model induced by LL-37 injections to determine the roles of YAP and TAZ in rosacea in vivo. We found that the expression levels of YAP and TAZ were upregulated in patients with rosacea. In the rosacea-like mouse model, we observed that the clinical features of rosacea, including telangiectasia and erythema, improved after the injection of a YAP/TAZ inhibitor. Additionally, treatment with a YAP/TAZ inhibitor reduced the expression levels of YAP and TAZ and diminished vascular endothelial growth factor (VEGF) immunoreactivity in the rosacea-like mouse model. Our findings suggest that YAP/TAZ inhibitors can attenuate angiogenesis associated with the pathogenesis of rosacea and that both YAP and TAZ are potential therapeutic targets for patients with rosacea.


Cell Reports ◽  
2018 ◽  
Vol 25 (5) ◽  
pp. 1304-1317.e5 ◽  
Author(s):  
Yumeng Wang ◽  
Xiaoyan Xu ◽  
Dejan Maglic ◽  
Michael T. Dill ◽  
Kamalika Mojumdar ◽  
...  

2017 ◽  
Vol 49 (5) ◽  
pp. 603-611 ◽  
Author(s):  
Ting-Ting Zhang ◽  
Guo-Min Zhang ◽  
Yu-Hang Jin ◽  
Yi-Xuan Guo ◽  
Zhen Wang ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Chao Zheng ◽  
Jiaqian Luo ◽  
Yifan Yang ◽  
Rui Dong ◽  
Fa-Xing Yu ◽  
...  

Background and Aim: Biliary atresia (BA), an inflammatory destruction of the bile ducts, leads to liver fibrosis in infants and accounts for half of cases undergoing pediatric liver transplantation. Yes-associated protein (YAP), an effector of the Hippo signaling pathway, is critical in maintaining identities of bile ductal cells. Here, we evaluated the expression of YAP and YAP target genes in BA livers and a rhesus rotavirus (RRV)-induced BA mice model.Methods: Liver specimens collected from 200 BA patients were compared with those of 30 non-BA patients. Model mice liver tissues were also collected. The expression of YAP and YAP target genes were measured by transfection, RNA-seq, immunohistochemistry, immunoblot, and quantitative PCR. Masson's trichrome staining and the Biliary Atresia Research Consortium (BARC) system were utilized to score liver fibrosis status.Results: The expression of YAP is elevated and positively correlated with fibrosis in BA livers. Moreover, ANKRD1, which is identified as the target gene of YAP, is also highly expressed in BA livers. Consistent with clinical data, YAP and ANKRD1 are significantly upregulated in RRV-induced BA mouse model.Conclusions: YAP expression is closely correlated with the bile duct hyperplasia and liver fibrosis, and may serve as an indicator for liver fibrosis and BA progression. This study indicates an involvement of the Hippo signaling pathway in the development of BA, and the YAP induced ANKRD1 expression may also be related to bile duct hyperplasia in BA. This provides a new direction for more in-depth exploration of the etiology and pathogenesis of biliary atresia.


Author(s):  
Vinod P. Sinoorkar ◽  
Pratiksha S. Thakurdas

Diabetes is diseases characterized by chronic hyperglycemia resulting from defects in insulin secretion, insulin action, or both. In India more than 62 million individuals currently diagnosed with the diabetes. Diabetes is resulting from insulin deficiency or pancreatic cells become insulin resistant. Pancreatic cell (β-cell) death by apoptosis is one of main reason which results in diabetic condition in patients. Neurofibromatosis 2 is involved is β-cell death. Neurofibromatosis 2 (NF2/Merlin) is a tumor suppressor protein, which belongs to the ezrin–radixin–moesin family of actin-binding proteins and regulates the Hippo signaling pathway in mammals and also involved in the regulation of cell proliferation and apoptosis. Merlin regulates the Hippo signaling pathway by controlling the Hippo kinases cassettes MST1/2 and LATS1/2. Therefore, targeting β-cell apoptosis and dysfunction can be a therapeutic approach for the treatment of diabetes. Hence our present investigation focus mainly to understand the detailed molecular features of NF2 by its protein sequence annotation by implementing tools and techniques of Bioinformatics.


Sign in / Sign up

Export Citation Format

Share Document