scholarly journals Hsa_circ_0005273 facilitates breast cancer tumorigenesis by regulating YAP1-hippo signaling pathway

Author(s):  
Xuehui Wang ◽  
Changle Ji ◽  
Jiashu Hu ◽  
Xiaochong Deng ◽  
Wenfang Zheng ◽  
...  

Abstract Background Circular RNAs (circRNAs), a novel class of endogenous RNAs, have shown to participate in the development of breast cancer (BC). Hsa_circ_0005273 is a circRNA generated from several exons of PTK2. However, the potential functional role of hsa_circ_0005273 in BC remains largely unknown. Here we aim to evaluate the role of hsa_circ_0005273 in BC. Methods The expression level of hsa_circ_0005273 and miR-200a-3p were examined by RT-qPCR in BC tissues and cell lines. The effect of knocking down hsa_circ_0005273 in BC cell lines were evaluated by examinations of cell proliferation, migration and cell cycle. In addition, xenografts experiment in nude mice were performed to evaluate the effect of hsa_circ_0005273 in BC. RNA immunoprecipitation assay, RNA probe pull-down assay, luciferase reporter assay and fluorescence in situ hybridization were conducted to confirm the relationship between hsa_circ_0005273, miR-200a-3p and YAP1. Results Hsa_circ_0005273 is over-expressed in BC tissues and cell lines, whereas miR-200a-3p expression is repressed. Depletion of hsa_circ_0005273 inhibited the progression of BC cells in vitro and in vivo, while overexpression of hsa_circ_0005273 exhibited the opposite effect. Importantly, hsa_circ_0005273 upregulated YAP1 expression and inactivated Hippo pathway via sponging miR-200a-3p to promote BC progression. Conclusions Hsa_circ_0005273 regulates the miR-200a-3p/YAP1 axis and inactivates Hippo signaling pathway to promote BC progression, which may become a potential biomarker and therapeutic target.

2020 ◽  
Author(s):  
Xuehui Wang ◽  
Changle Ji ◽  
Qifeng Luo ◽  
Jiashu Hu ◽  
Xiaochong Deng ◽  
...  

Abstract Background : Hsa_circ_0005273 is a circRNA generated from several exons of PTK2. However, the potential functions of hsa_circ_0005273 in breast cancer remains unknown. Here we aim to explore the role of hsa_circ_0005273 in BC. Methods : We chose miR-200a-3p as the potential target of hsa_circ_0005273. The expression levels of hsa_circ_0005273 and miR-200a-3p were examined in BC tissues compared with adjacent normal tissues by qRT-PCR. To characterize the function of hsa_circ_0005273, experiments of cell proliferation and migration were performed in BC cell lines infected with lentivirus targeting hsa_circ_0005273. In addition, xenografts experiment in nude mice were performed to evaluate the effect of hsa_circ_0005273 in BC. Luciferase reporter assay was conducted to confirm the relationship between hsa_circ_0005273 and miR-200a-3p as well as miR-200a-3p andYAP1. Results : Hsa_circ_0005273 is over-expressed in BC tissues and cell lines, whereas miR-200a-3p expression is repressed. Depletion of has_circ_0005273 or upregulation of miR-200a-3p inhibited the proliferation and migration of BC cells in vitro and vivo. Mechanistically, hsa_circ_0005273 upregulated YAP1 by targeting miR-200a-3p and activated Hippo signaling pathway to promote BC progression. Conclusions : Hsa_circ_0005273 regulates the miR-200a-3p/YAP1 axis and activates Hippo signaling pathway to promote BC progression, and it may serve as a potential biomarker and therapeutic target. Keywords : breast cancer, hsa_circ_0005273, miR-200a-3p,YAP1, progression


2021 ◽  
Author(s):  
Maonan Wang ◽  
Manli Dai ◽  
Dan Wang ◽  
Ting Tang ◽  
Fang Xiong ◽  
...  

Abstract BackgroundLong noncoding RNAs (lncRNAs) play an important role in the regulation of gene expression and are involved in several pathological responses. However, many important lncRNAs in breast cancer have not been identified and their expression levels and functions in breast cancer remain unknown.MethodsWe used the microarray data to identify differentially expressed lncRNAs between breast cancer and adjacent breast epithelial tissues. In vitro and in vivo assays were used to explore the biological effects of the differentially expressed lncRNA Apoptosis-Associated Transcript in Bladder Cancer (AATBC) in breast cancer cells. The mass spectrometry and RNA pulldown were used to screen AATBC interacting proteins. Using the Kaplan-Meier method, survival analysis was performed.ResultsThe expression of AATBC was significantly high in breast cancer samples, and this high AATBC level was tightly correlated with poor prognosis in breast cancer patients. In vitro and in vivo experiments indicated that AATBC promoted breast cancer cells migration and invasion. AATBC specifically interacted with Y-box binding protein 1 (YBX1), which activated the YAP1/Hippo signaling pathway by binding to macrophage stimulating 1 (MST1) and promoting the nuclear translocation of Yes associated protein 1 (YAP1), allowing its function as a nuclear transcriptional regulator. ConclusionsAATBC is highly expressed in breast cancer and contributes to patients’ progression, indicating that it could serve as a novel prognostic marker for the disease. Mechanistically, AATBC affects migration and invasion of breast cancer cells through an AATBC-YBX1-MST1 axis, resulting in activating the YAP1/Hippo signaling pathway. This is also an important supplement to the composition of the YAP1/Hippo signaling pathway. The model of “AATBC-YAP1” may bring a new dawn to the treatment of breast cancer.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1653-1667
Author(s):  
Pei Wang ◽  
Cuiwei Bai ◽  
Shasha Shen ◽  
Chang Jiang ◽  
Jie Deng ◽  
...  

Abstract The aim of this study was to clarify the role of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in proliferation, migration, and invasion of malignant pleural mesothelioma (MPM) cells. The quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to detect the expression of MALAT1 in MPM cell lines. The effects of MALAT1 and miR-141-3p on the proliferation, migration, and invasion of MPM cells were studied through a series of in vitro cellular experiments. The flow cytometry was utilized to detect the cell apoptosis. The dual‐luciferase reporter assay was employed to explore the binding relationship among MALAT1, miR-141-3p, and YES-associated protein 1 (YAP1). MALAT1 was overexpressed in MPM cell lines, while its knockdown significantly inhibited the cell proliferation, migration, and invasion, and increased the number of MPM cells in the G0/G1 phase. In addition, MALAT1 could directly bind to miR-141-3p and inhibit its expression. YAP1 has been identified as a downstream target of miR-141-3p, and its expression level was inhibited by miR-141-3p. MALAT1 can be used as a competitive endogenous RNA (ceRNA) to regulate the YAP1-Hippo signaling pathway through miR-141-3p, promote the proliferation, migration, and invasion of MPM cells, and provide a new target for the therapy of MPM.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Pei Li ◽  
Jinsheng Wang ◽  
Lingran Zhi ◽  
Fengmei Cai

Abstract Background Emerging evidence suggested that long intergenic noncoding RNA (lincRNA) 00887 (NR_024480) reduced the invasion and metastasis of non-small cell lung cancer by sponging miRNAs degradation. However, the role and regulatory mechanism of linc00887 in the progression of cervical cancer remain largely unknown. Methods In vivo or vitro, RT-qPCR assay was used to detect the expression of linc00887 in human normal (N = 30), cervical cancer tissues (N = 30), human normal cervical epithelial cells (Ect1/E6E7) and cervical cancer cell lines (HeLa, C33A). Then, CCK-8 and Transwell assays were used to examine cell proliferation and invasion when linc00887 was overexpressed or knocked down. In addition, bioinformatics, luciferase reporter gene and pull-down assays were used to predict and validate the relationship between linc00887 and miR-454-3p. Moreover, we detected the expression of miR-454-3p in Ect1/E6E7, HeLa and C33A cells when linc00887 was overexpressed or knocked down. Cell proliferation and invasion were also measured when pcDNA-linc00887 and miR-454-3p were transfected alone or together. Next, miR-454-3p target gene was predicted and validated by bioinformatics and luciferase reporter gene assays. Gain- and loss-of-function experiments were performed in HeLa cells to evaluate the effect of miR-454-3p or linc00887 on the expression of FERM domain containing protein 6 (FRMD6) protein and several key proteins in the FRMD6-Hippo signaling pathway. Results Linc00887 was downregulated in cervical cancer tissues or human cervical cancer cell lines (Hela, C33A) compared with normal tissues or cell lines. Overexpression of linc00887 inhibited proliferation and invasion HeLa and C33A cells, while linc00887 knockdown had the opposite effect. Linc00887 bound with miR-454-3p, and overexpression of miR-454-3p rescued linc00887-induced inhibition proliferation and invasion of HeLa cells. MiR-454-3p targeted and suppressed the expression of FRMD6, and linc00887 suppressed tumorigenesis of cervical cancer through activating the FRMD6-Hippo signaling pathway. Conclusions Linc00887, sponging miR-454-3p, inhibited the progression of cervical cancer by activating the FRMD6-Hippo signaling pathway.


Author(s):  
Yining Xu ◽  
Teng Yao ◽  
Haonan Ni ◽  
Rujie Zheng ◽  
Kangmao Huang ◽  
...  

Recently, various studies have identified circular RNAs (circRNAs) to play a significant role in tumorigenesis, thereby showing potential as novel tumor biomarkers. circSIPA1L1 is a newly discoveredcircular RNA, which is formed by back-splicing of SIPA1L1 and is found increased in osteosarcoma (OS). Nevertheless, the specific functions of circSIPA1L1 in OS remain unknown. In the present study, circSIPA1L1 was obtained from a previously reported circRNA microarray in the GEO database (GSE96964). Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to assess the mRNA level of circSIPA1L1 in OS cell lines and tissue samples. Bioinformatics analysis, luciferase reporter assays, real-time PCR, RNA pull-down assays and RNA immunoprecipitation (RIP) were employed to verify the binding of circSIPA1L1 with miR-411-5p. Xenograft tumor models were established to identify the role of circSIPA1L1 in vivo. A series of in vitro experiments, such as western blotting, colony formation, transwell assays and anoikis assay were employed to confirm the relationship across circSIPA1L1, miR-411-5p, and RAB9A. Our study confirmed circSIPA1L1 to be upregulated in both human OS samples and OS cell lines. Mechanistically, circSIPA1L1 could serve as a miR-411-5p molecular sponge to increase RAB9A expression, which was confirmed to be a tumor promoter mediating carcinogenesis. Silencing of circSIPA1L1 attenuated the vitality, invasion, migration and proliferation of OS cell lines both in vivo and in vitro. miR-411-5p inhibition or RAB9A overexpression reversed the anti-tumor effects caused by circSIPA1L1 knockdown. Briefly, circSIPA1L1 could function as a driver gene in OS and initiate OS tumorigenesis through the miR-411-5p/RAB9A signaling pathway, which might become a potential therapeutic biomarker for OS treatment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1580-1580
Author(s):  
Ranran Zhang ◽  
Wei Fenggui ◽  
Ru Chen ◽  
Ming Liang ◽  
Liping Wu ◽  
...  

Abstract INTRODUCTION: Acute myeloid leukemia (AML) represents a genetically heterogeneous hematological malignancy and is among top 10 common cancers in China. Though most cases achieve complete remission with current therapy, relapses eventually occur and subsequent therapies fail to eliminate the leukemic cells again and sustain long-term remission. Acquired resistance might be the real instigator of treatment failure. Nuclear factor kappa B (NF-κB) signaling pathway activation, a hallmark of primary AML cells, especially of leukemic stem cells (LCSs) and in vitro cell lines, and associated with multi-layered roles in AML pathogenesis, i.e., pre-leukemia myelodysplastic syndrome (MDS), LSCs, drug response/toxicity, relapse, and leukemic maintenance. Thus, NF-κB might be an attractive strategy for better treatment response and survival but less toxicity in AML therapy. METHODS: Luciferase reporter assays were performed to define the effects of fenretinide on transcriptional signaling pathways. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to evaluate the NF-κB down-stream genes expression, and immunoblotting was performed to confirm the role of fenretinide on NF-κB inihition and apoptosis. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assay were performed to test the drug response and chemosensitizing effect of fenretinide on AML cell lines and primary AML samples. RESULTS: Initially, using series of specific reporter assay kits we experimentally evaluated the effects of fenretinide on cell signaling in HEK293T cells and ten leukemic cell lines. Among all tested signaling, we found that fenretinide-treated could significantly suppress the NF-κB activation induced by TNF-α in HEK293T cells and daunorubin (DNR)-induced NF-κB activationin AML cell lines. To molecularly confirm NF-κB suppression, we found that anti-apoptotic gene BCL2 was decreased and pro-apoptotic genes cIAP, XIAP, BID were increased. Also, immunoblotting showed the decreased protein level of p65 NF-κB in accompanied by increased level of cleaved-PARP, and BID, while no alteration of JNK, ERK proteins. Next, we went on testing the fenretinide-induced NF-κB inhibition in AML chemosensitizing using series of MTT and flow cytometric apoptotic assays. In this regard, we found that even low dose of fenretinide could chemosensitize AML cells to DNR treatment. Mechanistic studies showed that while ROS maintenance successfully rendered AML cells sensitive to DNR treatment, abolishing ROS production using N-Acetyl Cysteine (NAC) could not reversed the response of AML cells to DNR. In the meanwhile, NF-κB inhibition was the main cause of fenretinide-induced AML chemosensitizing. Finally, we made use of nine primary AML samples and then treated with fenretinide and/or DNR. In general, fenretinide could suppress NF-κB signaling but the inhibition effects varied between patients. Acutally, adding fenretinide indeed substantially potentiated the effect of DNR on AML cells. Also, the chemosensitizing effect was correlated with the level of fenretinide-induced NF-κB inhibition and the MDR1 gene down-regulation. CONCLUSIONS: The significance in our study is to identify the role of fenretinide-induced NF-κB inhibition in AML chemosensitizing through systemic in vitro experiments. Using in vitro AML cell lines and primary samples, we found that fenretinide could suppress NF-κB signaling pathway and sensitize AML cells to DNR treatment via reducing the pro-apoptotic/apoptotic genes expression, affecting proliferation associated genes expression and down regulating MDR1 expression. Low dose DNR in combination with low dose fenretinide produced similar effect comparable to that of high dose DNR treatment. Further, we identified that NF-κB inhibition but not ROS induction was the main reason for fenretinide-induced chemosensitizing on AML cells. These entire results highlight that fenretinide is a very promising chemosensitizing agent that would be of help in AML therapy. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Lei Wang ◽  
Yehui Zhou ◽  
Liang Jiang ◽  
Linlin Lu ◽  
Tiantian Dai ◽  
...  

Abstract Background Chemotherapeutic resistance is the main cause of clinical treatment failure and poor prognosis in triple-negative breast cancer (TNBC). There is no research on chemotherapeutic resistance in TNBC from the perspective of circular RNAs (circRNAs). Methods TNBC-related circRNAs were identified based on the GSE101124 dataset. Quantitative reverse transcription PCR was used to detect the expression level of circWAC in TNBC cells and tissues. Then, in vitro and in vivo functional experiments were performed to evaluate the effects of circWAC in TNBC. Results CircWAC was highly expressed in TNBC and was associated with worse TNBC patient prognosis. Subsequently, it was verified that downregulation of circWAC can increase the sensitivity of TNBC cells to paclitaxel (PTX) in vitro and in vivo. The expression of miR-142 was negatively correlated with circWAC in TNBC. The interaction between circWAC and miR-142 in TNBC cells was confirmed by RNA immunoprecipitation assays, luciferase reporter assays, pulldown assays, and fluorescence in situ hybridization. Mechanistically, circWAC acted as a miR-142 sponge to relieve the repressive effect of miR-142 on its target WWP1. In addition, the overall survival of TNBC patients with high expression of miR-142 was significantly better than that of patients with low expression of miR-142, and these results were verified in public databases. MiR-142 regulated the expression of WWP1 and the activity of the PI3K/AKT pathway. It was confirmed that WWP1 is highly expressed in TNBC and that the prognosis of patients with high WWP1 expression is poor. Conclusions CircWAC/miR-142/WWP1 form a competing endogenous RNA (ceRNA) network to regulate PI3K/AKT signaling activity in TNBC cells and affect the chemosensitivity of cells.


2021 ◽  
Author(s):  
Shenshuo Gao ◽  
Zhikai Zhang ◽  
Xubin Wang ◽  
Yan Ma ◽  
Chensheng Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, and more and more evdiences show that the pathogenesis is regulated by various miRNAs.In this study, we investigated the role of miR-875 in GC. Methods:The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA RT-PCR. The effect of miR-875-5p on GC proliferation was determined by CCK-8 proliferation assay and EDU assay. Migration and invasion were examined by transwell migration and invasion assay and wound healing assay. The interaction between miR-875-5p and its target gene USF2 was verified by a dual luciferase reporter assay. The effects of miR-875-5p in vivo were studied in xenograft nude mice models.Related proteins were detected by Western blot.Results:The results showed that miR-875-5p inhibited the proliferation, migration and invasion of gastric cancer cells in vitro, and inhibited tumorigenesis in vivo. USF2 proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracts the effects of miR-875-5p inhibitors.Overexpression of miR-875-5p can inhibit proliferation, migration, and invasion through the TGF-β signaling pathway by down-regulation of USF2 in GC, providing a new research direction for the diagnosis and targeted therapy of GC.Conclusions: MiR-875-5pcan inhibited the progression of GC by directly targeting USF2 and negatively regulating TGF-β signaling pathway.In the future, miR-875-5p is expected to be used as a potential therapeutic target for GC therapy.


Author(s):  
Xinping Chen ◽  
Weihua Xu ◽  
Zhichao Ma ◽  
Juan Zhu ◽  
Junjie Hu ◽  
...  

Background: Increasing circular RNAs (circRNAs) are reported to participate in cancer progression. Nonetheless, the role of circRNAs in nasopharyngeal carcinoma (NPC) has not been fully clarified. This work is aimed to probe the role of circ_0000215 in NPC.Methods: Circ_0000215 expression in NPC tissues and cell lines was examined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell counting kit-8 (CCK-8) assay, 5-bromo-2′-deoxyuridine (BrdU) assay, scratch healing assay and Transwell experiment were executed to investigate the regulatory function of circ_0000215 on the proliferation, migration and invasion of NPC cells. RNA immunoprecipitation (RIP), pull-down and dual-luciferase reporter experiments were utilized to determine the binding relationship between circ_0000215 and miR-512-5p, and between miR-512-5p and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) 3′UTR. The effects of circ_0000215 on NPC growth and metastasis in vivo were examined with nude mice model. Western blot was applied to detect the regulatory effects of circ_0000215 and miR-512-5p on PIK3R1 expression.Results: Circ_0000215 was overexpressed in NPC tissues and cell lines. The functional experiments confirmed that knockdown of circ_0000215 impeded the growth and metastasis of NPC cells in vitro and in vivo. Additionally, circ_0000215 could also work as a molecular sponge to repress miR-512-5p expression. PIK3R1 was validated as a target gene of miR-512-5p, and circ_0000215 could increase the expression level of PIK3R1 in NPC cells via suppressing miR-512-5p.Conclusion: Circ_0000215 is overexpressed in NPC and exerts oncogenic effects in NPC through regulating miR-512-5p/PIK3R1 axis.


2020 ◽  
Author(s):  
Bo Fu ◽  
Wei Liu ◽  
Peng Li ◽  
Li Pan ◽  
Ke Li ◽  
...  

Abstract Background: Accumulating evidence indicates that circular RNAs (circRNAs) play critical roles in tumorigenesis and progression of various cancers. We previously identified a novel upregulated circRNA, circBCBM1 (hsa_circ_0001944), in the context of breast cancer brain metastasis. However, the potential biological function and molecular mechanism of circBCBM1 in breast cancer brain metastasis remain largely unknown.Methods: In this reserch, we validated the expression and characterization of circBCBM1 through RT-qPCR, Sanger sequencing, RNase R assay and fluorescence in situ hybridization (FISH). Functional experiments were performed to determine the effect of circBCBM1 on growth and metastasis of 231-BR cells both in vitro and in vivo. The regulatory mechanisms among circBCBM1, miR-125a (has-miR-125a-5p), and BRD4 (bromodomain containing 4) were investigated by RNA immunoprecipitation (RIP), RNA pull-down, luciferase reporter assay and western blot. Results: Our findings demonstrated that circBCBM1 is a stable and cytoplasmic circRNA. Functionally, silencing of circBCBM1 led to decreased proliferation and migration of 231-BR cells whereas elevated circBCBM1 expression showed reverse effects in vitro. These findings were confirmed in vivo in mouse models, as knockdown of circBCBM1 significantly decreased growth and brain metastases of 231-BR cells. Mechanistically, circBCBM1 functions as an endogenous miR-125a sponge to inhibit miR-125a activity, resulting in the upregulation of BRD4 expression and subsequent upregulation of MMP9 (matrix metallopeptidase 9) through Sonic hedgehog (SHH) signaling pathway. Importantly, circBCBM1 was markedly upregulated in the breast cancer brain metastasis cells and clinical tissue and plasma samples; besides, the overexpression of circBCBM1 in primary cancerous tissues was associated with shorter brain metastasis-free survival (BMFS) of breast cancer patients.Conclusions: These findings indicate that circBCBM1 is involved in breast cancer brain metastasis via circBCBM1/miR-125a/BRD4 axis, which sheds light on the pathogenic mechanism of circBCBM1 and provides translational evidence that circBCBM1 may serve as a novel diagnostic or prognostic biomarker and potential therapeutic target for breast cancer brain metastasis.


Sign in / Sign up

Export Citation Format

Share Document