scholarly journals Policy Assessments for the Carbon Emission Flows and Sustainability of Bitcoin Blockchain Operation in China

2020 ◽  
Author(s):  
Shangrong Jiang ◽  
Yuze Li ◽  
Quanying Lu ◽  
Yongmiao Hong ◽  
Dabo Guan ◽  
...  

Abstract The large energy consumption and the associated carbon emission of the Bitcoin blockchain operations are growing to a non-negligible problem that could potentially undermine the sustainable efforts of many countries around the world. In this paper, we make the first and original attempt to investigate the carbon emission flows of the Bitcoin blockchain operations in China under different carbon policies with a Bitcoin blockchain carbon emission (BBCE) model. We find that without any policy interventions, the annual energy consumption of the Bitcoin blockchain in China is expected to maximize in 2024 at 296.59 Twh and generate 130.50 million metric tons of carbon emission flows correspondingly, which would exceed the annualized greenhouse gas emission level of the Czech Republic and Portugal in 2016. Moreover, the maximum carbon emission per GDP of the Bitcoin industry is estimated to reach 10.77 kg/USD in June 2026 based on benchmark assessments. In addition, policies that induce changes in the energy consumption structure of the mining activities may be more effective than intuitive punitive measures in limiting the total amount of carbon emission in the Bitcoin blockchain operation. In particular, we find that market access policy has an incentive effect on the emission reduction of the Bitcoin industry. After evaluating the policy effectiveness, we provide some novel insights for the sustainable operations of the disruptive blockchain technology by analyzing the carbon emissions pattern of the Bitcoin blockchain.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shangrong Jiang ◽  
Yuze Li ◽  
Quanying Lu ◽  
Yongmiao Hong ◽  
Dabo Guan ◽  
...  

AbstractThe growing energy consumption and associated carbon emission of Bitcoin mining could potentially undermine global sustainable efforts. By investigating carbon emission flows of Bitcoin blockchain operation in China with a simulation-based Bitcoin blockchain carbon emission model, we find that without any policy interventions, the annual energy consumption of the Bitcoin blockchain in China is expected to peak in 2024 at 296.59 Twh and generate 130.50 million metric tons of carbon emission correspondingly. Internationally, this emission output would exceed the total annualized greenhouse gas emission output of the Czech Republic and Qatar. Domestically, it ranks in the top 10 among 182 cities and 42 industrial sectors in China. In this work, we show that moving away from the current punitive carbon tax policy to a site regulation policy which induces changes in the energy consumption structure of the mining activities is more effective in limiting carbon emission of Bitcoin blockchain operation.


2021 ◽  
Vol 945 (1) ◽  
pp. 012049
Author(s):  
Ramesh Subramaniam ◽  
Vignes Ponniah ◽  
Shalini Sanmargaraja ◽  
Eric Lou ◽  
Muhammad Afiq Bin Nor Adli ◽  
...  

Abstract To measure the level of energy performance of a building, there are several categories of energy consumption to be calculated such as oil, natural gas and electricity. In order to significantly minimise the Greenhouse gas emission in an office, it is important to tap into the positive progress of energy efficiency of equipment which contributes to total energy performance of a building. Consequently, to enable accurate building energy consumption of a building, energy modelling method is applied to identify total consumption and cost of energy usage with effects of carbon emission. Hence, this will help to reduce the costing of energy inside building with differences of efficiency options. Therefore, this paper aims to analyse an office building in terms of the level of energy consumption and carbon emission as a case study. The first objective is to identify the amount of energy consumption and carbon emission inside the building using the simulation software. Secondly, to identify the differences between the data recorded through simulation software and physical data. Finally, to identify solutions to decrease the carbon emission by applying measures towards reducing energy consumption inside the building.


2021 ◽  
Vol 13 (3) ◽  
pp. 1339
Author(s):  
Ziyuan Chai ◽  
Zibibula Simayi ◽  
Zhihan Yang ◽  
Shengtian Yang

In order to achieve the carbon emission reduction targets in Xinjiang, it has become a necessary condition to study the carbon emission of households in small and medium-sized cities in Xinjiang. This paper studies the direct carbon emissions of households (DCEH) in the Ebinur Lake Basin, and based on the extended STIRPAT model, using the 1987–2017 annual time series data of the Ebinur Lake Basin in Xinjiang to analyze the driving factors. The results indicate that DCEH in the Ebinur Lake Basin during the 31 years from 1987 to 2017 has generally increased and the energy structure of DCEH has undergone tremendous changes. The proportion of coal continues to decline, while the proportion of natural gas, gasoline and diesel is growing rapidly. The main positive driving factors affecting its carbon emissions are urbanization, vehicle ownership and GDP per capita, while the secondary driving factor is residents’ year-end savings. Population, carbon intensity and energy consumption structure have negative effects on carbon emissions, of which energy consumption structure is the main factor. In addition, there is an environmental Kuznets curve between DCEH and economic development, but it has not yet reached the inflection point.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3287
Author(s):  
Alireza Tabrizikahou ◽  
Piotr Nowotarski

For decades, among other industries, the construction sector has accounted for high energy consumption and emissions. As the energy crisis and climate change have become a growing concern, mitigating energy usage is a significant issue. The operational and end of life phases are all included in the building life cycle stages. Although the operation stage accounts for more energy consumption with higher carbon emissions, the embodied stage occurs in a time-intensive manner. In this paper, an attempt has been made to review the existing methods, aiming to lower the consumption of energy and carbon emission in the construction buildings through optimizing the construction processes, especially with the lean construction approach. First, the energy consumption and emissions for primary construction materials and processes are introduced. It is followed by a review of the structural optimization and lean techniques that seek to improve the construction processes. Then, the influence of these methods on the reduction of energy consumption is discussed. Based on these methods, a general algorithm is proposed with the purpose of improving the construction processes’ performance. It includes structural optimization and lean and life cycle assessments, which are expected to influence the possible reduction of energy consumption and carbon emissions during the execution of construction works.


2011 ◽  
Vol 183-185 ◽  
pp. 1374-1377
Author(s):  
Yi Chin Huang ◽  
Shin Hao Yang ◽  
Chin Hsiang Luo

According to the IPCC WGII Fourth Assessment Report, more than 89% of observational data series and studies are consistent with the greenhouse gas change, which is produced from human activities, as a response to global warming. In the previous point, the tourism and leisure industry is regarding as the non-smokestack industry. However, with an increase of leisure and tourism activities, the carbon dioxide emission and energy use have been growing. Recognizing these risks, the Agenda 21 for the Tourism and Travel Industry promulgated by the World Travel and Tourism Council, the WTO and the Earth Council addressed energy consumption as a key issue of concern. The buildings are a major part of the leisure industry. Therefore, this work aims to investigate the energy use and carbon emission of a hotel building, located in the middle of Taiwan, for four seasons. The consumption generated from each visitor activating in the building also were conducted. The results will be used as a reference for further investigations into the reduction of energy use and carbon emission in the leisure buildings. By investigation of proposed carbon neutral model, the willing price to pay is highly larger than both of the shifted and non-shifted prices. Most people has always inclined to pay for self-related GHG emission. Green development and sustainable operations in the leisure industry should be attended because the real costs of a green building are less than you think.


2015 ◽  
Vol 1092-1093 ◽  
pp. 1597-1600
Author(s):  
Zhong Hua Wang ◽  
Xin Ye Chen

The need to reduce carbon emission in Heilongjiang Province of China is urgent challenge facing sustainable development. This paper aims to make explicit the problem-solving of carbon emission to find low carbon emission ways. According to domestic and foreign literatures on estimating and calculating carbon emissions and by integrating calculation methods of carbon emissions, it was not possible to consider all of the many contributions to carbon emissions. Calculation model of carbon emissions suitable to this paper is selected. The carbon emissions of energy consumption in mining industry are estimated and calculated from 2005 to 2012, and the characteristics of carbon emission are analyzed at the provincial level. It makes the point that carbon emissions of energy consumption in mining industry can be reduced when we attempt to alter energy consumption structure, adjust industrial structure and improve energy utilization efficiency.


2018 ◽  
Vol 768 ◽  
pp. 293-305 ◽  
Author(s):  
Chun Zhi Zhao ◽  
Yi Liu ◽  
Shi Wei Ren ◽  
Jiang Quan

along with the rapid development of commercial concrete industry and the continuous growth of concrete demand, the commercial concrete production has brought large energy consumption and mineral resource consumption; cement calcination and direct/indirect energy consumption within the boundary of ready-mixed concrete system have become the main source of concrete greenhouse gas. This paper mainly settles key problems such as boundary definition, data collection, calculation model, data acceptance/rejection and data calculation method concerned with concrete carbon emission calculation, establishes the national uniform concrete carbon emission calculation method and emission factor within the same cultural boundary, and provides theoretical and data calculation basis for determining the reference value and grade of concrete carbon emission. As for other products, the carbon emission of unit product may also be calculated by reference to this paper; therefore, inherent carbon emission data of buildings are accumulated, providing quantized data support for taking measures to reduce the carbon emission intensity.


Sign in / Sign up

Export Citation Format

Share Document