scholarly journals UbiSites-SRF: Ubiquitination Sites Prediction Using Statistical Moment with Random Forest Approach

Author(s):  
Shazia Murad ◽  
Arwa Mashat ◽  
Alia Mahfooz ◽  
Sher Afzal Khan ◽  
Omar Barukab

Abstract Ubiquitination is the process that supports the growth and development of eukaryotic and prokaryotic organisms. It is helpful in regulating numerous functions such as the cell division cycle, caspase-mediated cell death, maintenance of protein transcription, signal transduction, and restoration of DNA damage. Because of these properties, its identification is essential to understand its molecular mechanism. Some traditional methods such as mass spectrometry and site-directed mutagenesis are used for this purpose, but they are tedious and time consuming. In order to overcome such limitations, interest in computational models of this type of identification is therefore being developed. In this study, an accurate and efficient classification model for identifying ubiquitination sites was constructed. The proposed model uses statistical moments for feature extraction along with random forest for classification. Three sets of ubiquitination are used to train and test the model. The model is assessed through 10-fold cross-validation and jackknife tests. We achieved a 10-fold accuracy of 100% for dataset-1, 99.88% for dataset-2 and 99.84% for the dataset-3, while with Jackknife test we got 100% for the dataset-1, 99.91% for dataset-2 and 99.99%. for the dataset-3. The results obtained are almost the maximum, which is far better as compared to the pre-existing models available in the literature.

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhen-Hao Guo ◽  
Zhu-Hong You ◽  
De-Shuang Huang ◽  
Hai-Cheng Yi ◽  
Zhan-Heng Chen ◽  
...  

AbstractAbundant life activities are maintained by various biomolecule relationships in human cells. However, many previous computational models only focus on isolated objects, without considering that cell is a complete entity with ample functions. Inspired by holism, we constructed a Molecular Associations Network (MAN) including 9 kinds of relationships among 5 types of biomolecules, and a prediction model called MAN-GF. More specifically, biomolecules can be represented as vectors by the algorithm called biomarker2vec which combines 2 kinds of information involved the attribute learned by k-mer, etc and the behavior learned by Graph Factorization (GF). Then, Random Forest classifier is applied for training, validation and test. MAN-GF obtained a substantial performance with AUC of 0.9647 and AUPR of 0.9521 under 5-fold Cross-validation. The results imply that MAN-GF with an overall perspective can act as ancillary for practice. Besides, it holds great hope to provide a new insight to elucidate the regulatory mechanisms.


2020 ◽  
Author(s):  
Kristo Radion Purba ◽  
David Asirvatham ◽  
Raja Kumar Murugesan

In recent years, social media is growing at an unprecedented rate, and more people have become influencers. Understanding popularity helps ordinary users to boost popularity, and business users to choose better influencers. There were studies to predict the popularity of posted images on social media, but there was none on the user's popularity as a whole. Furthermore, existing studies have not taken hashtag analysis into consideration, one of the most useful social media feature. This research aims to create a model to predict a user's popularity, which is defined by a combination of engagement rate and followers growth. There were six machine learning regression models tested. The proposed model successfully predicted the users’ popularity, with R2 up to 0.852, using Random Forest with 10-fold cross-validation. The additional statistical analysis and features analysis results revealed factors that can boost popularity, such as actively posting and following users, completing user's metadata, and using 11 hashtags. In contrast, it was also found that having a large number of posts and following in the past will not help in growing popularity, as well as the use of popular hashtags.


Author(s):  
Ting Liu ◽  
Jia-Mao Chen ◽  
Dan Zhang ◽  
Qian Zhang ◽  
Bowen Peng ◽  
...  

Apolipoprotein is a group of plasma proteins that are associated with a variety of diseases, such as hyperlipidemia, atherosclerosis, Alzheimer’s disease, and diabetes. In order to investigate the function of apolipoproteins and to develop effective targets for related diseases, it is necessary to accurately identify and classify apolipoproteins. Although it is possible to identify apolipoproteins accurately through biochemical experiments, they are expensive and time-consuming. This work aims to establish a high-efficiency and high-accuracy prediction model for recognition of apolipoproteins and their subfamilies. We firstly constructed a high-quality benchmark dataset including 270 apolipoproteins and 535 non-apolipoproteins. Based on the dataset, pseudo-amino acid composition (PseAAC) and composition of k-spaced amino acid pairs (CKSAAP) were used as input vectors. To improve the prediction accuracy and eliminate redundant information, analysis of variance (ANOVA) was used to rank the features. And the incremental feature selection was utilized to obtain the best feature subset. Support vector machine (SVM) was proposed to construct the classification model, which could produce the accuracy of 97.27%, sensitivity of 96.30%, and specificity of 97.76% for discriminating apolipoprotein from non-apolipoprotein in 10-fold cross-validation. In addition, the same process was repeated to generate a new model for predicting apolipoprotein subfamilies. The new model could achieve an overall accuracy of 95.93% in 10-fold cross-validation. According to our proposed model, a convenient webserver called ApoPred was established, which can be freely accessed at http://tang-biolab.com/server/ApoPred/service.html. We expect that this work will contribute to apolipoprotein function research and drug development in relevant diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Mingzhu Tang ◽  
Xiangwan Fu ◽  
Huawei Wu ◽  
Qi Huang ◽  
Qi Zhao

Traffic flow anomaly detection is helpful to improve the efficiency and reliability of detecting fault behavior and the overall effectiveness of the traffic operation. The data detected by the traffic flow sensor contains a lot of noise due to equipment failure, environmental interference, and other factors. In the case of large traffic flow data noises, a traffic flow anomaly detection method based on robust ridge regression with particle swarm optimization (PSO) algorithm is proposed. Feature sets containing historical characteristics with a strong linear correlation and statistical characteristics using the optimal sliding window are constructed. Then by providing the feature sets inputs to the PSO-Huber-Ridge model and the model outputs the traffic flow. The Huber loss function is recommended to reduce noise interference in the traffic flow. The L2 regular term of the ridge regression is employed to reduce the degree of overfitting of the model training. A fitness function is constructed, which can balance the relative size between the k-fold cross-validation root mean square error and the k-fold cross-validation average absolute error with the control parameter η to improve the optimization efficiency of the optimization algorithm and the generalization ability of the proposed model. The hyperparameters of the robust ridge regression forecast model are optimized by the PSO algorithm to obtain the optimal hyperparameters. The traffic flow data set is used to train and validate the proposed model. Compared with other optimization methods, the proposed model has the lowest RMSE, MAE, and MAPE. Finally, the traffic flow that forecasted by the proposed model is used to perform anomaly detection. The abnormality of the error between the forecasted value and the actual value is detected by the abnormal traffic flow threshold based on the sliding window. The experimental results verify the validity of the proposed anomaly detection model.


2019 ◽  
Vol 35 (23) ◽  
pp. 4922-4929 ◽  
Author(s):  
Zhao-Chun Xu ◽  
Peng-Mian Feng ◽  
Hui Yang ◽  
Wang-Ren Qiu ◽  
Wei Chen ◽  
...  

Abstract Motivation Dihydrouridine (D) is a common RNA post-transcriptional modification found in eukaryotes, bacteria and a few archaea. The modification can promote the conformational flexibility of individual nucleotide bases. And its levels are increased in cancerous tissues. Therefore, it is necessary to detect D in RNA for further understanding its functional roles. Since wet-experimental techniques for the aim are time-consuming and laborious, it is urgent to develop computational models to identify D modification sites in RNA. Results We constructed a predictor, called iRNAD, for identifying D modification sites in RNA sequence. In this predictor, the RNA samples derived from five species were encoded by nucleotide chemical property and nucleotide density. Support vector machine was utilized to perform the classification. The final model could produce the overall accuracy of 96.18% with the area under the receiver operating characteristic curve of 0.9839 in jackknife cross-validation test. Furthermore, we performed a series of validations from several aspects and demonstrated the robustness and reliability of the proposed model. Availability and implementation A user-friendly web-server called iRNAD can be freely accessible at http://lin-group.cn/server/iRNAD, which will provide convenience and guide to users for further studying D modification.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 898 ◽  
Author(s):  
Mobeen Ur Rehman ◽  
Kil To Chong

DNA N6-methyladenine (6mA) is part of numerous biological processes including DNA repair, DNA replication, and DNA transcription. The 6mA modification sites hold a great impact when their biological function is under consideration. Research in biochemical experiments for this purpose is carried out and they have demonstrated good results. However, they proved not to be a practical solution when accessed under cost and time parameters. This led researchers to develop computational models to fulfill the requirement of modification identification. In consensus, we have developed a computational model recommended by Chou’s 5-steps rule. The Neural Network (NN) model uses convolution layers to extract the high-level features from the encoded binary sequence. These extracted features were given an optimal interpretation by using a Long Short-Term Memory (LSTM) layer. The proposed architecture showed higher performance compared to state-of-the-art techniques. The proposed model is evaluated on Mus musculus, Rice, and “Combined-species” genomes with 5- and 10-fold cross-validation. Further, with access to a user-friendly web server, publicly available can be accessed freely.


2020 ◽  
Vol 37 (4) ◽  
pp. 563-569
Author(s):  
Dželila Mehanović ◽  
Jasmin Kevrić

Security is one of the most actual topics in the online world. Lists of security threats are constantly updated. One of those threats are phishing websites. In this work, we address the problem of phishing websites classification. Three classifiers were used: K-Nearest Neighbor, Decision Tree and Random Forest with the feature selection methods from Weka. Achieved accuracy was 100% and number of features was decreased to seven. Moreover, when we decreased the number of features, we decreased time to build models too. Time for Random Forest was decreased from the initial 2.88s and 3.05s for percentage split and 10-fold cross validation to 0.02s and 0.16s respectively.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rong Zhu ◽  
Yong Wang ◽  
Jin-Xing Liu ◽  
Ling-Yun Dai

Abstract Background Identifying lncRNA-disease associations not only helps to better comprehend the underlying mechanisms of various human diseases at the lncRNA level but also speeds up the identification of potential biomarkers for disease diagnoses, treatments, prognoses, and drug response predictions. However, as the amount of archived biological data continues to grow, it has become increasingly difficult to detect potential human lncRNA-disease associations from these enormous biological datasets using traditional biological experimental methods. Consequently, developing new and effective computational methods to predict potential human lncRNA diseases is essential. Results Using a combination of incremental principal component analysis (IPCA) and random forest (RF) algorithms and by integrating multiple similarity matrices, we propose a new algorithm (IPCARF) based on integrated machine learning technology for predicting lncRNA-disease associations. First, we used two different models to compute a semantic similarity matrix of diseases from a directed acyclic graph of diseases. Second, a characteristic vector for each lncRNA-disease pair is obtained by integrating disease similarity, lncRNA similarity, and Gaussian nuclear similarity. Then, the best feature subspace is obtained by applying IPCA to decrease the dimension of the original feature set. Finally, we train an RF model to predict potential lncRNA-disease associations. The experimental results show that the IPCARF algorithm effectively improves the AUC metric when predicting potential lncRNA-disease associations. Before the parameter optimization procedure, the AUC value predicted by the IPCARF algorithm under 10-fold cross-validation reached 0.8529; after selecting the optimal parameters using the grid search algorithm, the predicted AUC of the IPCARF algorithm reached 0.8611. Conclusions We compared IPCARF with the existing LRLSLDA, LRLSLDA-LNCSIM, TPGLDA, NPCMF, and ncPred prediction methods, which have shown excellent performance in predicting lncRNA-disease associations. The compared results of 10-fold cross-validation procedures show that the predictions of the IPCARF method are better than those of the other compared methods.


Author(s):  
Panny Agustia Rahayuningsih

Penyakit Kanker merupakan sepuluh besar penyakit pembunuh di dunia. Kanker merupakan penyakit yang ganas dan sulit disembuhkan jika penyebarannya sudah terlalu luas. Akan tetapi, pendeteksian sel kanker sedini mungkin dapat mengurangi resiko kematian. Penelitian ini bertujuan untuk memprediksikan tingkat kematian dini kanker pada penduduk Eropa dengan menggunakan 5algoritma klasifikasi yaitu: Desecion Tree, Naïve Bayes, k-Nearset Neighbour, Random Forest dan Neural Network dari algoritma tersebut algoritma mana yang dianggap paling baik untuk penelitian ini. Pengujian dilakukan dengan beberapa tahapan penelitian antara lain: dataset (pengumpulan data), pengolahan data awal, metode yang diusulkan, pengujian metode menggunakan 10-fold cross validation, evaluasi hasil dan uji beda t-test. Nilai alpha yang digunakan adalah 0.05. jika probabilitasnya >0.05 maka H0 diterima. Sedangkan jika probabilitasnya <0.05 maka Ho ditolak.Hasil dari penelitian yang mendapatkan performe terbaik dengan nilai akurasi sebesar 98,35% adalah algoritma Neural Network. Sedangkan, hasil penelitian menggunakan uji t-test algoritma dengan model terbaik yaitu: algoritma Random Forest dan Neural Network, algoritma Naïve Bayes lumanyan baik, algoritma Desecion Tree cukup baik dan algoritma yang kurang baik adalah algoritma K-Nearset Neighbour (K-NN).


2020 ◽  
Vol 9 (3) ◽  
pp. 376-390
Author(s):  
Nur Fitriyah ◽  
Budi Warsito ◽  
Di Asih I Maruddani

Appearance of PT Aplikasi Karya Anak Bangsa or as known as Gojek since 2015 give a convenience facility to people in Indonesia especially in daily activities. Sentiment analysis on Twitter social media can be the option to see how Gojek users respond to the services that have been provided. The response was classified into positive sentiment and negative sentiment using Support Vector Machine method with model evaluation 10-fold cross validation. The kernel used is the linear kernel and the RBF kernel. Data labeling can be done with manually and sentiment scoring. The test results showed that the RBF kernel gets overall accuracy and the highest kappa accuracy on manual data labeling and sentiment scoring. On manual data labeling, the overall accuracy is 79.19% and kappa accuracy is 16.52%. While the labeling of data with sentiment scoring obtained overall accuracy of 79.19% and kappa accuracy of 21%. The greater overall accuracy value and kappa accuracy obtained, the better performance of the classification model. Keywords: Gojek, Twitter, Support Vector Machine, overall accuracy, kappa accuracy


Sign in / Sign up

Export Citation Format

Share Document