scholarly journals Giant Extra-Ordinary Near Infrared Transmission from Seemingly Opaque Plasmonic Metasurface: Sensing Applications

Author(s):  
Sagar Kumar Verma ◽  
Sachin Kumar Srivast

Abstract In the present study, we report giant extra-ordinary transmission of near infra-red (NIR) light, more than 90%, through a seemingly opaque plasmonic metasurface, which consists of two metal nano-slits arrays (MNSAs) with alternate opening arrangements. By using perfect coupling of the plasmonic modes formed between the sharp edges of the upper and lower MNSAs of silver, a giant, wavelength selective transmission could be obtained. The study is accompanied by optimization of electromagnetic (EM) field coupling for different interlayer spacings and lateral overlap between the two MNSAs to understand their significance in light transmission through the metasurface. The interlayer spacing between the MNSAs works as the transmitting channel for light. The optimization of performance with different fill factors and plasmonic metals was performed as well. Because of the excitation of extended surface plasmons (ESPs) generated at both the MNSAs, the metasurface can be used for refractive index (RI) sensing as one of its applications by using a transparent and flexible polymer, such as polydimethylsiloxane (PDMS), as substrate. The maximum sensitivity which could be achieved for the optimal configuration of the metasurface was 1435.71 nm/RIU, with a figure of merit (FOM) of 80 RIU− 1 for 90.45% optical transmission of light for the refractive index variation of analyte medium from 1.33 to 1.38 RIU. The present study strengthens the concept of light funneling through subwavelength structures due to plasmons, which are responsible for light transmission through this seemingly opaque metasurface and finds use in highly sensitive, flexible, and cost effective EOT based sensors.

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7452
Author(s):  
Muhammad A. Butt ◽  
Andrzej Kaźmierczak ◽  
Cuma Tyszkiewicz ◽  
Paweł Karasiński ◽  
Ryszard Piramidowicz

In this paper, a novel and cost-effective photonic platform based on silica–titania material is discussed. The silica–titania thin films were grown utilizing the sol–gel dip-coating method and characterized with the help of the prism-insertion technique. Afterwards, the mode sensitivity analysis of the silica–titania ridge waveguide is investigated via the finite element method. Silica–titania waveguide systems are highly attractive due to their ease of development, low fabrication cost, low propagation losses and operation in both visible and near-infrared wavelength ranges. Finally, a ring resonator (RR) sensor device was modelled for refractive index sensing applications, offering a sensitivity of 230 nm/RIU, a figure of merit (FOM) of 418.2 RIU−1, and Q-factor of 2247.5 at the improved geometric parameters. We believe that the abovementioned integrated photonics platform is highly suitable for high-performance and economically reasonable optical sensing devices.


2000 ◽  
Vol 54 (3) ◽  
pp. 450-455 ◽  
Author(s):  
Stephen R. Lowry ◽  
Jim Hyatt ◽  
William J. McCarthy

A major concern with the use of near-infrared (NIR) spectroscopy in many QA/QC laboratories is the need for a simple reliable method of verifying the wavelength accuracy of the instrument. This requirement is particularly important in near-infrared spectroscopy because of the heavy reliance on sophisticated statistical vector analysis techniques to extract the desired information from the spectra. These techniques require precise alignment of the data points between the vectors corresponding to the standard and sample spectra. The National Institute of Standards and Technology (NIST) offers a Standard Reference Material (SRM 1921) for the verification and calibration of mid-infrared spectrometers in the transmittance mode. This standard consists of a 38 μm-thick film of polystyrene plastic. While SRM 1921 works well as a mid-infrared standard, a thicker sample is required for use as a routine standard in the near-infrared spectral region. The general acceptance and proven reliability of polystyrene as a standard reference material make it a very good candidate for a cost-effective NIR standard that could be offered as an internal reference for every instrument. In this paper we discuss a number of the parameters in a Fourier transform (FT)-NIR instrument that can affect wavelength accuracy. We also report a number of experiments designed to determine the effects of resolution, sample position, and optics on the wavelength accuracy of the system. In almost all cases the spectral reproducibility was better than one wavenumber of the values extrapolated from the NIST reference material. This finding suggests that a thicker sample of polystyrene plastic that has been validated with the SRM 1921 standard would make a cost-effective reference material for verifying wavelength accuracy in a medium-resolution FT-NIR spectrometer.


2020 ◽  
Vol 12 (3) ◽  
pp. 88
Author(s):  
Muhammad Ali Butt ◽  
Nikolai Lvovich Kazansky

We presented a numerical investigation of a metamaterial narrowband perfect absorber conducted via a finite element method based on commercially available COMSOL software. The periodic array of silicon meta-atoms (MAs) are placed on 80 nm thick gold layer. The broadband light at normal incidence is blocked by the gold layer and silicon MAs are used to excite the surface plasmon by scattering light through it. Maximum absorption of 95.7 % is obtained at the resonance wavelength of 1137.5 nm due to the perfect impedance matching of the electric and magnetic dipoles. The absorption is insensitive to the wide-angle of incidence ranging from 0 to 80 degrees. We believe that the proposed metamaterial device can be utilized in solar photovoltaic and biochemical sensing applications. Full Text: PDF ReferencesY. Cheng, X.S. Mao, C. Wu, L. Wu, R.Z. Gong, "Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing", Optical Materials, 53, 195-200 (2016). CrossRef S. S. Mirshafieyan, D.A. Gregory, "Electrically tunable perfect light absorbers as color filters and modulators", Scientific Reports,8, 2635 (2018). CrossRef D.M. Nguyen, D. Lee, J. Rho, "Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths", Scientific Reports, 7, 2611 (2017). CrossRef Y. Sun, Y. Ling, T. Liu, L. Huang, "Electro-optical switch based on continuous metasurface embedded in Si substrate", AIP Advances, 5, 117221 (2015). CrossRef H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou, Y. Lai, "A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials", Light: Science & Applications, 7, 50 (2018). CrossRef S. K. Patel, S. Charola, J. Parmar, M. Ladumor, "Broadband metasurface solar absorber in the visible and near-infrared region", Materials Research Express, 6, 086213 (2019). CrossRef Q. Qian, S. Ti, C. Wang, "All-dielectric ultra-thin metasurface angular filter", Optics Letters, 44, 3984 (2019). CrossRef P. Yu et al., "Broadband Metamaterial Absorbers", Advanced Optical Materials, 7, 1800995 (2019). CrossRef Y. J. Kim et al., "Flexible ultrathin metamaterial absorber for wide frequency band, based on conductive fibers", Science and Technology of advanced materials, 19, 711-717 (2018). CrossRef N.L. Kazanskiy, S.N. Khonina, M.A. Butt, "Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review", Physica E, 117, 113798 (2020). CrossRef H. E. Nejad, A. Mir, A. Farmani, "Supersensitive and Tunable Nano-Biosensor for Cancer Detection", IEEE Sensors Journal, 19, 4874-4881 (2019). CrossRef


2021 ◽  
Vol 2 (6) ◽  
pp. 240
Author(s):  
Joseph E. Roser ◽  
Alessandra Ricca ◽  
Richard J. Cartwright ◽  
Cristina Dalle Ore ◽  
Dale P. Cruikshank

Abstract A near-IR absorption band at 2.2 μm linked to ammonia-containing ice has been detected on icy bodies throughout the solar system and appears in the extensive volume of data for Pluto and Charon returned by New Horizons. This band is an important clue for understanding the abundance of ammonia and ammoniated compounds on the surface of outer solar system bodies and requires new laboratory data for its full analysis. To satisfy this data need, the complex refractive index of amorphous ammonia ice was calculated from experimental infrared transmission spectra with ice deposition and measurements conducted at 40 K, a characteristic surface temperature for outer solar system bodies. The measured imaginary part of the complex refractive index and associated band strength calculations are generally larger than prior published values for amorphous ammonia ice at 30 K. The complex refractive index for amorphous ammonia at 40 K computed in the mid-infrared region (2.5–22.73 μm) will also be valuable for interpreting observations of both solar system and astrophysical sources anticipated with the Near InfraRed Spectrograph and Mid-Infrared Instrument on the James Webb Space Telescope.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1011
Author(s):  
Dimitre Z. Dimitrov ◽  
Zih Fan Chen ◽  
Vera Marinova ◽  
Dimitrina Petrova ◽  
Chih Yao Ho ◽  
...  

In this work, highly conductive Al-doped ZnO (AZO) films are deposited on transparent and flexible muscovite mica substrates by using the atomic layer deposition (ALD) technique. AZO-mica structures possess high optical transmittance at visible and near-infrared spectral range and retain low electric resistivity, even after continuous bending of up to 800 cycles. Structure performances after bending tests have been supported by atomic force microscopy (AFM) analysis. Based on performed optical and electrical characterizations AZO films on mica are implemented as transparent conductive electrodes in flexible polymer dispersed liquid crystal (PDLC) devices. The measured electro-optical characteristics and response time of the proposed devices reveal the higher potential of AZO-mica for future ITO-free flexible optoelectronic applications.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 793
Author(s):  
Uroš Zupančič ◽  
Joshua Rainbow ◽  
Pedro Estrela ◽  
Despina Moschou

Printed circuit boards (PCBs) offer a promising platform for the development of electronics-assisted biomedical diagnostic sensors and microsystems. The long-standing industrial basis offers distinctive advantages for cost-effective, reproducible, and easily integrated sample-in-answer-out diagnostic microsystems. Nonetheless, the commercial techniques used in the fabrication of PCBs produce various contaminants potentially degrading severely their stability and repeatability in electrochemical sensing applications. Herein, we analyse for the first time such critical technological considerations, allowing the exploitation of commercial PCB platforms as reliable electrochemical sensing platforms. The presented electrochemical and physical characterisation data reveal clear evidence of both organic and inorganic sensing electrode surface contaminants, which can be removed using various pre-cleaning techniques. We demonstrate that, following such pre-treatment rules, PCB-based electrodes can be reliably fabricated for sensitive electrochemical biosensors. Herein, we demonstrate the applicability of the methodology both for labelled protein (procalcitonin) and label-free nucleic acid (E. coli-specific DNA) biomarker quantification, with observed limits of detection (LoD) of 2 pM and 110 pM, respectively. The proposed optimisation of surface pre-treatment is critical in the development of robust and sensitive PCB-based electrochemical sensors for both clinical and environmental diagnostics and monitoring applications.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lilha M. B. Santos ◽  
Mathijs Mutsaers ◽  
Gabriela A. Garcia ◽  
Mariana R. David ◽  
Márcio G. Pavan ◽  
...  

AbstractDeployment of Wolbachia to mitigate dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) transmission is ongoing in 12 countries. One way to assess the efficacy of Wolbachia releases is to determine invasion rates within the wild population of Aedes aegypti following their release. Herein we evaluated the accuracy, sensitivity and specificity of the Near Infrared Spectroscopy (NIRS) in estimating the time post death, ZIKV-, CHIKV-, and Wolbachia-infection in trapped dead female Ae. aegypti mosquitoes over a period of 7 days. Regardless of the infection type, time post-death of mosquitoes was accurately predicted into four categories (fresh, 1 day old, 2–4 days old and 5–7 days old). Overall accuracies of 93.2, 97 and 90.3% were observed when NIRS was used to detect ZIKV, CHIKV and Wolbachia in dead Ae. aegypti female mosquitoes indicating NIRS could be potentially applied as a rapid and cost-effective arbovirus surveillance tool. However, field data is required to demonstrate the full capacity of NIRS for detecting these infections under field conditions.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Zhendong Yan ◽  
Chaojun Tang ◽  
Guohua Wu ◽  
Yumei Tang ◽  
Ping Gu ◽  
...  

Achieving perfect electromagnetic wave absorption with a sub-nanometer bandwidth is challenging, which, however, is desired for high-performance refractive-index sensing. In this work, we theoretically study metasurfaces for sensing applications based on an ultra-narrow band perfect absorption in the infrared region, whose full width at half maximum (FWHM) is only 1.74 nm. The studied metasurfaces are composed of a periodic array of cross-shaped holes in a silver substrate. The ultra-narrow band perfect absorption is related to a hybrid mode, whose physical mechanism is revealed by using a coupling model of two oscillators. The hybrid mode results from the strong coupling between the magnetic resonances in individual cross-shaped holes and the surface plasmon polaritons on the top surface of the silver substrate. Two conventional parameters, sensitivity (S) and figure of merit (FOM), are used to estimate the sensing performance, which are 1317 nm/RIU and 756, respectively. Such high-performance parameters suggest great potential for the application of label-free biosensing.


Sign in / Sign up

Export Citation Format

Share Document