scholarly journals Long-Term Subculture Affects Rooting Competence via Changes in the Hormones and Protein Profiles in Cedrela Fissilis Vell. (Meliaceae) Shoots

Author(s):  
Tadeu dos Reis Oliveira ◽  
Damián Balfagón ◽  
Kariane Rodrigues Sousa ◽  
Victor Paulo Mesquita Aragão ◽  
Leandro Francisco de Oliveira ◽  
...  

Abstract Long-term subculture plays an essential role in the large-scale multiplication and production of somatic plantlets. We investigated the effects of long-term subculture on in vitro shoot development and ex vitro rooting associated with changes in the hormones and protein profiles in C. fissilis. The number of subcultures of shoots induced a decrease in the ex vitro rooting response. The reduction in adventitious root (AR) formation was associated with decreases in the contents of indole-3-acetic acid (IAA), abscisic acid (ABA), 12-oxo phytodienoic acid (OPDA), putrescine (Put), and spermine and increases in jasmonic acid (JA), jasmonoyl-isoleucine, trans-cinnamic acid, and salicylic acid contents in shoots at the fourth subculture compared to the first. The ornithine decarboxylase enzyme preferentially functions in the Put biosynthesis pathway and was related to the highest AR formation in shoots at the first subculture. Down-accumulation of the auxin-binding protein ABP19a in shoots from the fourth subculture compared to the first subculture was related to a decrease in both IAA contents and AR formation. In addition, down-accumulation of glucose-6-phosphate isomerase, glutamine synthetase leaf isozyme chloroplastic, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, L-ascorbate peroxidase, cytosolic, monodehydroascorbate reductase, and 2-Cys peroxiredoxin BAS1-like, chloroplastic and up-accumulation of caffeoyl-CoA O-methyltransferase 1 and isoforms of peroxidase 4 proteins in shoots from the fourth relative to the first subculture were associated with a reduction in AR formation. These results showed that the understanding of hormonal and molecular mechanisms related to the potential of AR formation in shoots under successive subcultures is relevant to improving large-scale plantlet production in C. fissilis.

2019 ◽  
pp. 57-67
Author(s):  
T.M. Tabatskaya ◽  
N.I. Vnukova

A technique for the long-term (up to 27 years) in vitro storage of valuable birch genotypes under normal (25 °C, 2.0 klx, 16-h day and 8-h night) and low temperature (4 °C, 0.5 klx, 6-h day and 18-h night) growing conditions on hormone-free media has been described. The study explored for the first time the influence of different strategies to store the clones of Betula pubescens and B. pendula var. сarelica (6 genotypes) on the regenerative capacity of collection samples, adaptive potential of regenerated plants and plant production by the in vitro and ex vitro techniques. It was established that both storage strategies provided a persistently high survival rate (82-100%) and regenerative capacity of in vitro shoots (the multiplication coefficient of 4.2-6.3 and rhizogenic activity of 90-100%). The clones retained their characteristics of height growth under the in vitro and ex vitro conditions, and demonstrated intraclonal homogeneity and lack of signs of somaclonal variability. The plants showed substantial interspecific differences at the stage of multiplication and transfer to the greenhouse. The highest percentage of acclimated plants (75-98% depending on the clone genotype) was obtained after planting of micro plants straight in the greenhouse, which simplified the technology and made plant production less costly. long-term in vitro storage, birch, species, genotype, micropropagation, ex vitro adaptation, plant material


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Zhao ◽  
Alan Blayney ◽  
Xiaorong Liu ◽  
Lauren Gandy ◽  
Weihua Jin ◽  
...  

AbstractEpigallocatechin gallate (EGCG) from green tea can induce apoptosis in cancerous cells, but the underlying molecular mechanisms remain poorly understood. Using SPR and NMR, here we report a direct, μM interaction between EGCG and the tumor suppressor p53 (KD = 1.6 ± 1.4 μM), with the disordered N-terminal domain (NTD) identified as the major binding site (KD = 4 ± 2 μM). Large scale atomistic simulations (>100 μs), SAXS and AUC demonstrate that EGCG-NTD interaction is dynamic and EGCG causes the emergence of a subpopulation of compact bound conformations. The EGCG-p53 interaction disrupts p53 interaction with its regulatory E3 ligase MDM2 and inhibits ubiquitination of p53 by MDM2 in an in vitro ubiquitination assay, likely stabilizing p53 for anti-tumor activity. Our work provides insights into the mechanisms for EGCG’s anticancer activity and identifies p53 NTD as a target for cancer drug discovery through dynamic interactions with small molecules.


2021 ◽  
Vol 22 (13) ◽  
pp. 6663
Author(s):  
Maurycy Jankowski ◽  
Mariusz Kaczmarek ◽  
Grzegorz Wąsiatycz ◽  
Claudia Dompe ◽  
Paul Mozdziak ◽  
...  

Next-generation sequencing (RNAseq) analysis of gene expression changes during the long-term in vitro culture and osteogenic differentiation of ASCs remains to be important, as the analysis provides important clues toward employing stem cells as a therapeutic intervention. In this study, the cells were isolated from adipose tissue obtained during routine surgical procedures and subjected to 14-day in vitro culture and differentiation. The mRNA transcript levels were evaluated using the Illumina platform, resulting in the detection of 19,856 gene transcripts. The most differentially expressed genes (fold change >|2|, adjusted p value < 0.05), between day 1, day 14 and differentiated cell cultures were extracted and subjected to bioinformatical analysis based on the R programming language. The results of this study provide molecular insight into the processes that occur during long-term in vitro culture and osteogenic differentiation of ASCs, allowing the re-evaluation of the roles of some genes in MSC progression towards a range of lineages. The results improve the knowledge of the molecular mechanisms associated with long-term in vitro culture and differentiation of ASCs, as well as providing a point of reference for potential in vivo and clinical studies regarding these cells’ application in regenerative medicine.


2018 ◽  
Vol 77 (1) ◽  
pp. 80-87 ◽  
Author(s):  
Mahipal S. Shekhawat ◽  
M. Manokari

AbstractHybanthus enneaspermusis a rare medicinal plant. We defined a protocol for micropropagation,ex vitrorooting of cloned shoots and their acclimatization. Surface-sterilized nodal segments were cultured on Murashige and Skoog (MS) medium with different concentrations of 6-benzylaminopurine (BAP) and kinetin (Kin). Medium supplemented with 1.5 mg L−1BAP was found optimum for shoot induction from the explants and 6.4±0.69 shoots were regenerated from each node with 97% response. Shoots were further proliferated maximally (228±10.3 shoots per culture bottle with 7.5±0.43 cm length) on MS medium augmented with 1.0 mg L−1each of BAP and Kin within 4–5 weeks. The shoots were rootedin vitroon half strength MS medium containing 2.0 mg L−1indole-3 butyric acid (IBA). The cloned shoots were pulse-treated with 300 mg L–1 of IBA and cultured on soilrite® in a greenhouse. About 96% of the IBA-pulsed shoots rootedex vitroin soilrite®, each shoot producing 12.5±0.54 roots with 5.1±0.62 cm length. Theex vitrorooted plantlets showed a better rate of survival (92%) in a field study thanin vitrorooted plantlets (86%). A comparative foliar micromorphological study ofH. enneaspermuswas conducted to understand the micromorphological changes during plant developmental processes fromin vitrotoin vivoconditions in terms of variations in stomata, vein structures and spacing, and trichomes. This is the first report onex vitrorooting inH. enneaspermusand the protocol can be exploited for conservation and large-scale propagation of this rare and medicinally important plant.


2021 ◽  
Author(s):  
Lin Tao ◽  
M. Paul Chiarelli ◽  
Sylvia I. Pavlova ◽  
Joel L. Schwartz ◽  
James V. DeFrancesco ◽  
...  

Abstract Certain soil microbes resist and metabolize polycyclic aromatic hydrocarbons (PAHs). The same is true for certain skin microbes. Oral microbes have the potential to oxidize tobacco PAHs to increase their ability to cause cancer. We hypothesized that oral microbes that resist high levels of PAH in smokers exist and can be identified based on their resistance to PAHs. We isolated bacteria and fungi that survived long term in minimal media with PAHs as the sole carbon source from the oral cavity in 11 of 14 smokers and only 1 of 6 nonsmokers. Of bacteria genera that included species that survived harsh PAH exposure in vitro, all were found at trace levels on the oral mucosa, except for Staphylococcus and Actinomyces. Two PAH-resistant strains of Candida albicans (C. albicans) were isolated from smokers. C. albicans is found orally at high levels in tobacco users and some Candida species can metabolize PAHs. The two C. albicans strains were tested for metabolism of two model PAH substrates, pyrene and phenanthrene. The result showed that the PAH-resistant C. albicans strains did not metabolize the two PAHs. In conclusion, evidence for large scale oral microbial metabolism of tobacco PAHs by common oral microbes remains lacking.


2019 ◽  
Vol 13 (2) ◽  
pp. 269-278
Author(s):  
Adriano Bortolotti Silva ◽  
Ligiane Aparecida Florentino ◽  
Dalvana De Sousa Pereira ◽  
Paulo Roberto Correa Landgraf ◽  
Ana Carolina Rodrigues Alves ◽  
...  

Ornamental pineapple is a hardy plant with significant landscaping value. Tissue culture of plants is viable for producing plants with a high phytosanitary quality. However, one of the difficulties with this cultivar is the acclimatization process, which is slow and can cause losses. The objective of the present study was to verify the potential of inoculation with diazotrophic bacteria for in vitro and ex vivo growth of ornamental pineapple. A group of diazotrophic bacterial strains selected at the Universidade José do Rosário Vellano (UNIFENAS) was prioritized in this study, and the treatments included bacterial strains UNIFENAS (100-13, 100-60, 100-68, 100-153, 100-167 and 100-198). These strains were evaluated in terms of their capacity to produce indole 3-acetic acid. Subsequently, plants were cultivated in a medium composed of MS medium salts (1/4), adding 1 mL of the bacterial strain. In the control treatment, the plants were maintained in 2 mL of MS medium. 7 days after inoculation, the plants were transplanted into the MS, where they were maintained for 30 days. After in vitro cultivation, the plants were transferred to pots containing commercial Plantmax® substrate and maintained under these conditions for 60 days. The diazotrophic bacteria were able to synthesize auxins, and their inoculation promoted greater growth in vitro and ex vitro in the plants. In the acclimatization phase, the plants inoculated with UNIFENAS strains (100-60, 100-68 and 100-153) promoted a higher shoot growth, chlorophyll content and nitrate reductase enzyme activity.


2020 ◽  
Vol 36 (4) ◽  
Author(s):  
Anatálya dos Santos Ribeiro ◽  
Alexssandra Jéssica Rondon de Figueiredo ◽  
Gabriela Cristina Rech Tormen ◽  
André Luís Lopes da Silva ◽  
Wellington Ferreira Campos ◽  
...  

Bamboo species are an alternative for the composition of forest plantations. However, their potential has not been explored due to the hard time in producing large-scale clonal plants. Thus, the aim this work was to evaluate the in vitro establishment, bud multiplication and ex vitro rooting of Bambusa vulgaris. The first experiment tested different systemic and contact fungicide solutions, based on exposure time, during the establishment phase. Established explants were subjected to evaluation of residual fungicide effect on subcultures during the multiplication and elongation phases. The second experiment evaluated the influence of activated carbon on ex vitro survival and on adventitious rooting. Explant immersion in liquid culture medium added with 1.0 mL of fungicide for 120 hours has favored the in vitro establishment and reduced fungal contamination. On the other hand, it favored the shoot emission of shoots per explant during the multiplication phase. Both rooting induction culture medium and mini-incubator system use were effective in enabling adventitious root formation. The presence of activated carbon in the rooting induction culture medium resulted in a higher clonal plant survival rate.  


2020 ◽  
Author(s):  
Miriam Pagin ◽  
Simone Giubbolini ◽  
Cristiana Barone ◽  
Gaia Sambruni ◽  
Yanfen Zhu ◽  
...  

AbstractThe Sox2 transcription factor is necessary for the long-term self-renewal of neural stem cells (NSC). Its mechanism of action is still poorly defined. To identify molecules regulated by Sox2, and acting in mouse NSC maintenance, we transduced, individually or in combination, into Sox2-deleted NSC, genes whose expression is strongly downregulated following Sox2 loss (Fos, Jun, Egr2). Fos alone rescued long-term proliferation, as shown by in vitro cell growth and clonal analysis. Further, Fos requirement for efficient long-term proliferation was demonstrated by the strong reduction of NSC clones capable of long-term expansion following CRISPR/Cas9-mediated Fos inactivation. Previous work showed that the Suppressor of cytokine signaling 3 (Socs3) gene is strongly downregulated following Sox2 deletion, and its reexpression by lentiviral transduction rescues long-term NSC proliferation. Fos appears to be an upstream regulator of Socs3, possibly together with Jun and Egr2; indeed, Sox2 reexpression in Sox2-deleted NSC progressively activates both Fos and Socs3 expression; in turn, Fos transduction activates Socs3 expression. Based on available SOX2 ChIPseq and ChIA-PET data, as well as results from the literature, we propose a model whereby Sox2 is a direct activator of both Socs3 and Fos, as well as possibly Jun and Egr2; in turn, Fos, Jun and Egr2 may activate Socs3. These results provide the basis for developing a model of a network of interactions, regulating critical effectors of NSC proliferation and long-term maintenance.Significance statementProliferation and maintenance of NSC are essential during normal brain development, and, postnatally, for the maintenance of hippocampal function and memory until advanced age. Little is known about the molecular mechanisms that maintain the critical aspects of NSC biology (quiescence and proliferation) in postnatal age. Our work provides a methodology, transduction of genes deregulated following Sox2 deletion, that allows to test many candidate genes for their ability to sustain NSC proliferation. In principle, this may have interesting implications for identifying targets for pharmacological manipulations.


Materials ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 1427 ◽  
Author(s):  
Agmal Scherzad ◽  
Till Meyer ◽  
Norbert Kleinsasser ◽  
Stephan Hackenberg

Background: Zinc oxide nanoparticles (ZnO NPs) are among the most frequently applied nanomaterials in consumer products. Evidence exists regarding the cytotoxic effects of ZnO NPs in mammalian cells; however, knowledge about the potential genotoxicity of ZnO NPs is rare, and results presented in the current literature are inconsistent. Objectives: The aim of this review is to summarize the existing data regarding the DNA damage that ZnO NPs induce, and focus on the possible molecular mechanisms underlying genotoxic events. Methods: Electronic literature databases were systematically searched for studies that report on the genotoxicity of ZnO NPs. Results: Several methods and different endpoints demonstrate the genotoxic potential of ZnO NPs. Most publications describe in vitro assessments of the oxidative DNA damage triggered by dissoluted Zn2+ ions. Most genotoxicological investigations of ZnO NPs address acute exposure situations. Conclusion: Existing evidence indicates that ZnO NPs possibly have the potential to damage DNA. However, there is a lack of long-term exposure experiments that clarify the intracellular bioaccumulation of ZnO NPs and the possible mechanisms of DNA repair and cell survival.


1998 ◽  
Vol 22 ◽  
pp. 323-325
Author(s):  
M. C. Hickey ◽  
A. P. Moloney ◽  
M. O'Connell ◽  
J. Connolly

In vitro techniques have been developed to facilitate the measurement of nutritional variability amongst food. Many kinetic studies have utilized the modified Tilley and Terry technique, with long-term incubations carried out in Erlenmeyer flasks. These are inefficient in utilizing incubator space for large scale studies. However substitution of Erlenmeyer flasks with tubes as fermentation units leaves the system prone to ‘bridging’, the formation of dense mats of forage particles by entrapped gas, above the level of the media in a fermentation unit. The objective of experiment 1 was to establish an effective incubation technique to eliminate the random variation caused by bridging.


Sign in / Sign up

Export Citation Format

Share Document