scholarly journals Prediction of Micronucleus Assay Outcome using in Vivo Activity Data and Molecular Structure Features

Author(s):  
Priyanka Ramesh ◽  
Shanthi V

Abstract In vivo micronucleus assay is the widely used genotoxic test to determine the extent of chromosomal aberrations caused by the chemical compounds in human beings, which plays a significant role in the drug discovery paradigm. To reduce the uncertainties of the in vivo experiments and the expenses, we intended to develop novel machine learning-based tools to predict the toxicity of the compounds with high precision. A total of 472 compounds with known toxicity information were retrieved from the PubChem Bioassay database and literature. The fingerprints and descriptors of the compounds were generated using PaDEL and ChemSAR for the analysis. The performance of the models was assessed using three tires of evaluation strategies such as 5-fold, 10-fold, and external validation. The accuracy of the models during external validation lay between 0.57 and 0.86. Note that a combination of fingerprints and random forest showed reliable predictive capability. In essence, structural alerts causing genotoxicity of the compounds were identified using the structural activity relationship model of SARpy tool. This study highlights that the structural alerts such as chlorocyclohexane and trimethylamine are likely to be the leading cause of toxicity in humans, further validated using the Toxtree application. Indeed, the results from our study will assist in scrutinizing the genotoxicity of the compounds with high precision by replacing extensive sacrifice of animal models.

Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6057
Author(s):  
Wonyoung Lee ◽  
So-Jung Park ◽  
Ji-Young Hwang ◽  
Kwang-Hyun Hur ◽  
Yong Sup Lee ◽  
...  

In recent years, there have been frequent reports on the adverse effects of synthetic cannabinoid (SC) abuse. SCs cause psychoactive effects, similar to those caused by marijuana, by binding and activating cannabinoid receptor 1 (CB1R) in the central nervous system. The aim of this study was to establish a reliable quantitative structure–activity relationship (QSAR) model to correlate the structures and physicochemical properties of various SCs with their CB1R-binding affinities. We prepared tetrahydrocannabinol (THC) and 14 SCs and their derivatives (naphthoylindoles, naphthoylnaphthalenes, benzoylindoles, and cyclohexylphenols) and determined their binding affinity to CB1R, which is known as a dependence-related target. We calculated the molecular descriptors for dataset compounds using an R/CDK (R package integrated with CDK, version 3.5.0) toolkit to build QSAR regression models. These models were established, and statistical evaluations were performed using the mlr and plsr packages in R software. The most reliable QSAR model was obtained from the partial least squares regression method via Y-randomization test and external validation. This model can be applied in vivo to predict the addictive properties of illicit new SCs. Using a limited number of dataset compounds and our own experimental activity data, we built a QSAR model for SCs with good predictability. This QSAR modeling approach provides a novel strategy for establishing an efficient tool to predict the abuse potential of various SCs and to control their illicit use.


Author(s):  
Wonyoung Lee ◽  
So-Jung Park ◽  
Ji-Young Hwang ◽  
Kwang-Hyun Hur ◽  
Yong Sup Lee ◽  
...  

In recent years, there have been frequent reports on the adverse effects of synthetic cannabinoid (SC) abuse. SCs cause psychoactive effects, similar to those caused by marijuana, by binding and activating cannabinoid receptor 1 (CB1R) in the central nervous system. The aim of this study was to establish a reliable quantitative structure-activity relationship (QSAR) model to correlate the structures and physicochemical properties of various SCs with their CB1R-binding affinities. We prepared 15 SCs and their derivatives (tetrahydrocannabinol [THC], naphthoylindoles, and cyclohexylphenols) and determined their binding affinity to CB1R, which is known as a dependence-related target. We calculated the molecular descriptors for dataset compounds using an R/CDK (R package integrated with CDK, version 3.5.0) toolkit to build QSAR regression models. These models were established and statistical evaluations were performed using the mlr and plsr packages in R software. The most reliable QSAR model was obtained from the partial least squares regression method via external validation. This model can be applied in vivo to predict the addictive properties of illicit new SCs. Using a limited number of dataset compounds and our own experimental activity data, we built a QSAR model for SCs with good predictability. This QSAR modeling approach provides a novel strategy for establishing an efficient tool to predict the abuse potential of various SCs and to control their illicit use.


Author(s):  
Kaur M ◽  
Bhatia A ◽  
Sethi D ◽  
Vig D ◽  
Kaur G

The rise in infectious diseases as well as non infectious immune related disorders demand the need for the development of efficient immunomodulators. The chemical based drugs employed to cure these diseases may have the side effects and are costly. In the present era, consumer awareness about the harmful effects of chemical drugs raised a need to search for natural/alternative therapy for the disease treatment. Immunotherapy is one of the alternative ways of management/modification of diseases. Probiotics have been proved to be beneficial for human beings. Even its components such as cell wall, genomic DNA, etc act as foreign antigen to eukaryotic organisms and are immune enhancers. The immune enhancing efficacy of probiotic DNA might be increased by nanoparticle assisted delivery. Chitosan nanoparticles (chitosan NP) have been greatly explored and developed for pharmaceutical applications. Hence, the present study was conducted to prepare and characterize the probiotic genomic DNA loaded chitosan nanoparticles (DLCNP) and to compare their immunomodulatory potential with Lactobacillus acidophilus NCDC343 (LA 343) whole cell and their isolated genomic DNA (LA DNA) in vitro as well as in experimental animals. The characterization studies revealed that nanoparticles size ranging from 350 to 515nm were prepared with a positive zeta potential in between +8.71 to +17.7mV. In vitro experiments proved that LA 343, LA DNA, DLCNP showed immune enhancing activity; maximum being shown by DLCNP. Further, in vivo experiments demonstrated that DLCNP show significantly higher activity than LA DNA. Moreover, study on routes of administration indicated that i.m route is best for giving LA DNA whereas, i.p route is better for nanoparticles.


Author(s):  
Prithiv K R Kumar

Renal failure is a major health problem. The mortality rate remain high despite of several therapies. The most complex of the renal issues are solved through stem cells. In this review, different mechanism for cure of chronic kidney injury along with cell engraftment incorporated into renal structures will be analysed. Paracrine activities of embryonic or induced Pluripotent stem cells are explored on the basis of stem cell-induced kidney regeneration. Several experiments have been conducted to advance stem cells to ensure the restoration of renal functions. More vigour and organised protocols for delivering stem cells is a possibility for advancement in treatment of renal disease. Also there is a need for pressing therapies to replicate the tissue remodelling and cellular repair processes suitable for renal organs. Stem cells are the undifferentiated cells that have the ability to multiply into several cell types. In vivo experiments on animal’s stem cells have shown significant improvements in the renal regeneration and functions of organs. Nevertheless more studies show several improvements in the kidney repair due to stem cell regeneration.


2018 ◽  
Vol 68 (12) ◽  
pp. 2747-2751
Author(s):  
Marioara Nicula ◽  
Nicolae Pacala ◽  
Lavinia Stef ◽  
Ioan Pet ◽  
Dorel Dronca ◽  
...  

Living organisms take nutrients from the environment, and together with them, substances with toxic potential � such as heavy metals. Lead is one common metal pollutant especially in aquatic environment, from where the fish can be intoxicated very easily. Bioavailability, distribution, toxic action, synergistic and antagonistic effects are characteristics which can alter the fish health. Our experimental study followed the effects of lead overload in water on iron distribution, in different tissues sample Carassius gibelio Bloch fish. We performed the experiment in four different fish groups: control C; lead � Pb (administration of lead in water 0.075mg/mL of water, as Pb(NO3)2 x � H2O); lead (the same dose) and 2% of freeze-dry garlic incorporated into fishes� food � Pb+garlic; lead (the same dose) and 2% chlorella incorporated into fishes� food � Pb+chlorella, for 21 consecutive days. The iron concentration was analysed with AAS (Atomic Absorption Spectroscopy) from gills, muscle, skin (and scales), intestine, liver, heart, brain, ovary, testicles, and kidney. The obtained data presented a significantly decrease of iron content in all tested tissue samples that demonstrated, alteration of iron homeostasis, explained by a strong antagonistic effect of lead on iron. Our experiment showed that biologic active principles from garlic and chlorella act like natural protectors, and potentiate the iron deficiency even in the case of lead overload in aquatic environment, for fish.


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


2019 ◽  
Vol 19 (5) ◽  
pp. 667-676
Author(s):  
José R. Santin ◽  
Gislaine F. da Silva ◽  
Maria V.D. Pastor ◽  
Milena F. Broering ◽  
Roberta Nunes ◽  
...  

Background: It was recently demonstrated that the phthalimide N-(4-methyl-phenyl)-4- methylphthalimide (MPMPH-1) has important effects against acute and chronic pain in mice, with a mechanism of action correlated to adenylyl cyclase inhibition. Furthermore, it was also demonstrated that phthalimide derivatives presented antiproliferative and anti-tumor effects. Considering the literature data, the present study evaluated the effects of MPMPH-1 on breast cancer bone metastasis and correlated painful symptom, and provided additional toxicological information about the compound and its possible metabolites. Methods: In silico toxicological analysis was supported by in vitro and in vivo experiments to demonstrate the anti-tumor and anti-hypersensitivity effects of the compound. Results: The data obtained with the in silico toxicological analysis demonstrated that MPMPH-1 has mutagenic potential, with a low to moderate level of confidence. The mutagenicity potential was in vivo confirmed by micronucleus assay. MPMPH-1 treatments in the breast cancer bone metastasis model were able to prevent the osteoclastic resorption of bone matrix. Regarding cartilage, degradation was considerably reduced within the zoledronic acid group, while in MPMPH-1, chondrocyte multiplication was observed in random areas, suggesting bone regeneration. Additionally, the repeated treatment of mice with MPMPH-1 (10 mg/kg, i.p.), once a day for up to 36 days, significantly reduces the hypersensitivity in animals with breast cancer bone metastasis. Conclusion: Together, the data herein obtained show that MPMPH-1 is relatively safe, and significantly control the cancer growth, allied to the reduction in bone reabsorption and stimulation of bone and cartilage regeneration. MPMPH-1 effects may be linked, at least in part, to the ability of the compound to interfere with adenylylcyclase pathway activation.


2018 ◽  
Vol 18 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Mohsen Mohammadgholi ◽  
Nourollah Sadeghzadeh ◽  
Mostafa Erfani ◽  
Saeid Abediankenari ◽  
Seyed Mohammad Abedi ◽  
...  

Background: Human fibronectin extra-domain B (EDB) is particularly expressed during angiogenesis progression. It is, thus, a promising marker of tumour growth. Aptides are a novel class of peptides with high-affinity binding to specific protein targets. APTEDB is an antagonist-like ligand that especially interacts with human fibronectin EDB. Objective: This study was the first attempt in which the hydrazinonicotinamide (HYNIC)-conjugated APTEDB was labelled with technetium-99m (99mTc) as an appropriate radiotracer and tricine/EDDA exchange labeling. Methods: Radiochemical purity, normal saline, and serum stability were evaluated by HPLC and radio-isotope TLC scanner. Other examinations, such as protein-binding calculation, dissociation radioligand binding assay, and partition coefficient constant determination, were also carried out. The cellular-specific binding of 99mTc- HYNIC-conjugated APTEDB was assessed in two EDB-positive (U87MG) and EDB-negative (U373MG) cell lines. Bio-distribution was investigated in normal mice as well as in U87MG and U373MG tumour-bearing mice. Eventually, the radiolabelled APTEDB was used for tumour imaging using planar SPECT. Results: Radiolabelling was achieved with high purity (up to 97%) and accompanied by high solution (over 90% after overnight) and serum (80% after 2 hours) stability. The obtained cellular-specific binding ratio was greater than nine-fold. In-vivo experiments showed rapid blood clearance with mainly renal excretion and tumour uptake specificity (0.48±0.03% ID/g after 1h). The results of the imaging also confirmed considerable tumour uptake for EDB-positive cell line compared with the EDB-negative one. Conclusion: Aptides are considered to be a potent candidate for biopharmaceutical applications. They can be modified with imaging or therapeutic agents. This report shows the capability of 99mTc-HYNIC-APTEDB for human EDB-expressing tumours detection.


Sign in / Sign up

Export Citation Format

Share Document