PGM5-AS1 Inhibits the Malignant Phenotype of Colon Cancer Cells by Regulating PAEP and NME1

2020 ◽  
Author(s):  
Bingqing Hui ◽  
Chen Lu ◽  
Jing Wang ◽  
Yetao Xu ◽  
Yuchen Yang ◽  
...  

Abstract Background: An increasing number of long non-coding RNAs (lncRNAs) is recognized to be associated with drug resistance in CRC.Methods: For identifying differentially expressed target genes regarding PGM5-AS1, RNA transcriptome sequencing was performed. The mechanism by which PGM5-AS1 regulates its target genes was explored by performing experiments such as fluorescent in situ hybridization assay, dual luciferase reporter gene assay and RNA immunoprecipitation. Results: The lncRNA PGM5-AS1 was identified by analyzing data from the original microarray data set of colon cancer (GSE75970). PGM5-AS1 additionally suppressed acquired oxaliplatin resistance in CRC cells. Malignant phenotype of PGM5-AS1 was inhibited by recruiting SRSF3 to activate alternative splicing and being a sponge specific to hsa-miR-423-5p.Conclusions: Downregulation of PGM5-AS1 in oxaliplatin-resistant colon cancer tissues and cell lines is induced by transcriptional inhibition of GFI1B. PGM5-AS1 recruited SRSF3 to activate alternative splicing to downregulate the expression of PAEP. In addition, PGM5-AS1 could competitively bind with hsa-miR-423-5p to upregulate the expression of NME1. PGM5-AS1 inhibits the proliferation, invasion, migration and acquired oxaliplatin resistance of colon cancer cells through these two pathways.

Author(s):  
Junhe Zhang ◽  
Wenwen Yang ◽  
Yunxi Xiao ◽  
Linlin Shan

Background: Colon cancer is one of the most common types of cancer worldwide. Multiple studies have unveiled the key role of microRNAs (miRNAs) in the development of various types of cancer. However, the mechanism of action of miR-125b in the development and progression of colon cancer remains unknown. Objective: In this study, we explored the association of miR-125b and signal transducer and activator of transcription 3 (STAT3) and its role in the proliferation and apoptosis of SW480 colon cancer cells. Methods: The miR-125b expression in NCM460, SW480, HT29, and HCT8 cells was detected using quantitative real-time polymerase chain reaction (qRT-PCR). SW480 cells were transfected with lentiviruses of GFP–miR–125b and GFP–NC to establish a stable miR-125b overexpression colon cancer cell model and a control model. The targeting relationship between miR-125b and STAT3 was analyzed using bioinformatics and verified by the dual-luciferase reporter gene assay. Cell proliferation and apoptosis were assessed using the Cell Counting Kit-8 assay and TUNEL staining. The expression levels of STAT3, Bcl-2, and Bax were analyzed using Western blot analysis. Results: It was found that the relative mRNA expression of miR-125b was decreased in SW480, HT29, and HCT8 cells compared with that in NCM460 cells (P<0.05). The luciferase reporter gene assay confirmed that miR-125b downregulated the STAT3 gene expression (P<0.05). Overexpression of miR-125b inhibited proliferation and promoted apoptosis in SW480 colon cancer cells and was accompanied by upregulated Bax expression and downregulated Bcl-2 expression (P<0.05). Re-expression of STAT3 promoted cell proliferation and inhibited cell apoptosis, whereas Bcl-2 expression increased, and Bax expression decreased (P<0.05). Conclusion: The miR-125b regulates the expression of Bax and Bcl-2 by downregulating the expression of STAT3, thereby inhibiting proliferation and inducing apoptosis of SW480 colon cancer cells.


2019 ◽  
Vol 9 (10) ◽  
pp. 1424-1428
Author(s):  
Zhouyang Cheng ◽  
Yang Cao ◽  
Qingfeng Ni ◽  
Jun Qin

Colorectal cancer is one of malignant tumors. microRNA plays an important role in various diseases. In this study, we evaluated miR-223's effect on the proliferation of colon cancer cells. Protein and RNA expression levels in patients with clinical colorectal cancer were determined by western blot and real-time quantitative PCR respectively. In addition, the mechanism of miR-223 action was explored by combining transfection methods in cell lines. Colon cancer tissues showed significantly elevated miR-223 expression compared with adjacent tissues. Meanwhile, FOXO3a and BIM protein levels were significantly lower in cancer tissues compared to adjacent tissues. In colon cancer cell lines, knockdown of miR-223 increased cell proliferation and decreased BIM expression. The luciferase reporter gene showed that miR-223 down-regulates BIM expression through targeting FOXO3a. In colon cancer cells, miR-223 can down-regulate BIM expression through FOXO3a, thereby promoting the proliferation of colon cancer cells, indicating that targeting miR-223-regulated FOXO3a pathway might lead to the development of a number of drugs, and it is feasible to have a purpose to regulate the behavior of malignant cells.


2020 ◽  
Vol 15 (1) ◽  
pp. 159-172
Author(s):  
Guoning Su ◽  
Zhibing Yan ◽  
Min Deng

AbstractSevoflurane was frequently used as a volatile anesthetic in cancer surgery. However, the potential mechanism of sevoflurane on lung cancer remains largely unclear. In this study, lung cancer cell lines (H446 and H1975) were treated by various concentrations of sevoflurane. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assessment and colony formation assay were performed to detect the cell viability and proliferation, separately. Also, transwell assay or flow cytometry assay was applied as well to evaluate the invasive ability or apoptosis in lung cancer cells, respectively. Western blot assay was employed to detect the protein levels of β-catenin and Wnt5a. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the expression level of prostate cancer-associated transcript 6 (PCAT6) and miR-326 in lung cancer tissues and cells. The target interaction between miR-326 and PCAT6 or Wnt5a was predicted by bioinformatics analysis and verified by the dual-luciferase reporter gene assay. Sevoflurane inhibited the abilities on viability, proliferation, invasion, and activation of Wnt/β-catenin signaling, but promoted apoptosis of H446 and H1975 cells in a dose-dependent manner. The expression of PCAT6 was increased in lung cancer tissues and cells, except for that of miR-326. Besides, sevoflurane could lead to expressed limitation of PCAT6 or improvement of miR-326. This process presented a stepwise manner. Up-regulation of PCAT6 restored the suppression of sevoflurane on abilities of proliferation, invasion, rather than apoptosis, and re-activated the Wnt5a/β-catenin signaling in cells. Moreover, the putative binding sites between miR-326 and PCTA6 or Wnt5a were predicted by starBase v2.0 software online. PCAT6 suppressing effects on cells could be reversed by pre-treatment with miR-326 vector. The promotion of Wnt5a inverted effects led from miR-326 or sevoflurane. Our study indicated that sevoflurane inhibited the proliferation, and invasion, but enhanced the apoptosis in lung cancer cells by regulating the lncRNA PCAT6/miR-326/Wnt5a/β-catenin axis.


2006 ◽  
Vol 66 (21) ◽  
pp. 10560-10566 ◽  
Author(s):  
Hee Kyu Lee ◽  
Yong Seok Choi ◽  
Young Ae Park ◽  
Sunjoo Jeong

2014 ◽  
Vol 34 (15) ◽  
pp. 2857-2873 ◽  
Author(s):  
Y. Akaike ◽  
K. Masuda ◽  
Y. Kuwano ◽  
K. Nishida ◽  
K. Kajita ◽  
...  

2021 ◽  
Author(s):  
Han Wang ◽  
Yingying Zhou ◽  
Siyang Zhang ◽  
Ya Qi ◽  
Min Wang

Abstract Background Small nucleolar RNA host gene 16 (SNHG16) and pre-mRNA processing factor 6(PRPF6) play vital roles in regulatory mechanisms of multiple cancers, but the mechanisms in ovarian cancer (OC) remains poorly understood. Methods The expression of SNHG16 transcripts-SNHG16-L/S in OC tissues were analyzed by real-time PCR (RT-PCR). The expression of PRPF6 in OC tissues were detected by Immunohistochemistry (IHC). Tumorigenesis, epithelial-to-mesenchymal transition (EMT) and PTX-resistance were detected by western blot, transwell, CCK-8 assays, colony formation assays and flow cytometry analyses. Molecular interactions were examined by dual-luciferase reporter gene assay, RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP). Results The results indicated the expression of SNHG16-L/S was opposite in chemo-resistance and chemo-sensitivity tissues of OC. And SNHG16-L/S had different effects on the progression and PTX-resistance of OC cells. SNHG16-L inhibited GATA binding protein 3 (GATA3) transcription through CCAAT/enhancer-binding protein b (CEBPB) to further promote tumorigenesis, EMT and PTX-resistance of OC. Moreover, PRPF6 was upregulated in chemo-resistance tissues of OC. PRPF6 promoted tumorigenesis and PTX-resistance in vitro and in vivo. Mechanistically, PRPF6 induced the alternative splicing of SNHG16 to downregulate SNHG16-L, which further mediated progression and PTX-resistance through upregulating GATA3 in OC. Conclusions Totally, the results demonstrated that PRPF6 promoted progression and PTX-resistance in OC through SNHG16-L/CEBPB/GATA3 axis. Thus, PRPF6 may become a valuable target for OC therapy.


2010 ◽  
Vol 9 (1) ◽  
pp. 293 ◽  
Author(s):  
Sang Y Chun ◽  
Craig Johnson ◽  
Joseph G Washburn ◽  
Marcia R Cruz-Correa ◽  
Duyen T Dang ◽  
...  

2004 ◽  
Vol 287 (3) ◽  
pp. G541-G546 ◽  
Author(s):  
Kiran K. Nagothu ◽  
Arun K. Rishi ◽  
Richard Jaszewski ◽  
Omer Kucuk ◽  
Adhip P. N. Majumdar

Although accumulating evidence suggests a chemopreventive role for folic acid (FA) in colorectal carcinogenesis, the underlying mechanisms are largely unknown. Previously, we reported that supplemental FA inhibits the expression and activation of epidermal growth factor receptor (EGFR) in colon cancer cell lines. To determine the mechanism(s) by which FA affects EGFR function, we have examined whether and to what extent supplemental FA or its metabolites 5-methyltetrahydrofolate (MTF), dihydrofolate (DF), and tetrahydrofolate (TF) will modulate basal and serum-induced activation of the EGFR promoter in the HCT-116 colon cancer cell line. HCT-116 cells were preincubated with or without (control) FA or one of its metabolites (10 μg/ml) for 48 h, transfected with the EGFR promoter luciferase reporter construct, and incubated for 48 h with FA, DF, TF, or 5-MTF in the absence or presence of 10% FBS. Supplemental FA as well as its metabolites markedly inhibited EGFR promoter activity and its methylation status. Exposure of the cells to 10% FBS caused a marked stimulation of EGFR promoter activity and its expression, both of which were greatly abrogated by supplemental FA and 5-MTF. In contrast, serum-induced activation of c- fos promoter activity was unaffected by 5-MTF. The 5-MTF-induced inhibition of serum-mediated stimulation of EGFR promoter activity and EGFR expression was reversed when methylation was inhibited by 5-aza-2′-deoxycytidine. Our data suggest that FA and its metabolite 5-MTF inhibit EGFR promoter activity in colon cancer cells by enhancing methylation. This could partly be responsible for FA-mediated inhibition of growth-related processes in colorectal neoplasia.


Sign in / Sign up

Export Citation Format

Share Document