scholarly journals Amplification, copy number variation, expression and association of non-synonymous SNP of bovine beta-defensin 129 gene with distinct fertility of cattle bull

Author(s):  
Subhash Solanki ◽  
Poonam Kashyap ◽  
Vijay Kumar ◽  
Martina Pukhrambam ◽  
Sachinandan De ◽  
...  

Abstract Background: The male reproductive specific class-A β-defensins are adsorbed on sperm surface and enrich sperm functioning thus considered vital for maintaining male fertility. The primate DEFB129 play role in sperm maturation, motility, and fertilization but its contribution to bovine fertility is still unexplored.Method: RLM-RACE and RT-qPCR approaches were used to characterize and expression analysis of Indian cattle BBD129 gene. The polymorphism analysis of the BBD129 gene was done by PCR, sequencing, and absolute RT-qPCR on sperm gDNA from distinct fertility cattle bulls. Bioinformatic analysis was performed to understand the structural and functional implications of SNP on BBD129 protein.Results: The complete coding sequence of the BBD129 gene consists of 582 bp mRNA including UTRs and conserves all beta-defensin-like characteristics. Sequencing results revealed two conserved non-synonymous T169G (rs378737321, S57A) and A329G (rs383285978, N110S) SNPs in the functional protein-coding exon. Based on SNP position and linkage, BBD129 gene haplotypes were categorized into four groups: TA haplotype (169T & 329A), GA haplotype (T169G polymorphism), TG haplotype (A329G polymorphism), and GG haplotype (when T169G & A329G polymorphisms present together). The frequencies distributions of BBD129 haplotypes in the high fertile group (n=105 clones) were: TA (71.42%), GA (1.90%), TG (2.8%), and GG (24.76%), while in the low fertile group of bulls, the frequencies distributions of observed BBD129 haplotypes (n=149 clones) were: TA (36.24%), GA (0%), TG (2.68%), and GG (61.07%). The distributions of TA haplotype were majorly distributed in bulls with a high conception rate (P=0.5256) while double mutated GG haplotype was significantly more abundant in bulls with a lower conception rate (P=0.0001). BBD129 exist as a single-copy gene in the bovine genome and found higher expression in the corpus-epididymis region. Bioinformatic analyses found nsSNPs as neutral and non-deleterious but their structural-distorter could result in altered mRNA secondary structure, protein conformations decreased protein stability, and compromised biological functionalities. The polymorphisms resulted in altered O-glycosylations (deletion S57A and insertion N110S) and an increase in phosphorylations (52T-Threonine and 110S-Serine) post-translational-modifications.Conclusion: BBD129 gene polymorphism could be associated with the fertility performance of cattle bulls.

2021 ◽  
Author(s):  
Subhash Singh Solanki ◽  
Poonam Kashyap ◽  
Ashutosh Vats ◽  
Vijay Kumar ◽  
Martina Pukhrambam ◽  
...  

Abstract BackgroundThe male reproductive specific class-A β-defensins are adsorbed on sperm surface and enrich sperm functioning thus considered vital for maintaining male fertility. The primate DEFB129 play role in sperm maturation, motility, and fertilization but its contribution to bovine fertility is still unexplored. MethodRLM-RACE and RT-qPCR approaches were used to characterize and expression analysis of Indian cattle BBD129 gene. The polymorphism analysis of the BBD129 gene was done by PCR, sequencing, and absolute RT-qPCR on sperm gDNA from distinct fertility cattle bulls. Bioinformatic analysis was performed to understand the structural and functional implications of SNP on BBD129 protein. ResultsThe complete coding sequence of the BBD129 gene consists of 582 bp mRNA including UTRs and conserves all beta-defensin-like characteristics. Sequencing results revealed two conserved non-synonymous T169G (rs378737321, S57A) and A329G (rs383285978, N110S) SNPs in the functional protein-coding exon. Based on SNP position and linkage, BBD129 gene haplotypes were categorized into four groups: TA haplotype (169T & 329A), GA haplotype (T169G polymorphism), TG haplotype (A329G polymorphism), and GG haplotype (when T169G & A329G polymorphisms present together). The frequencies distributions of BBD129 haplotypes in the high fertile group (n=105 clones) were: TA (71.42%), GA (1.90%), TG (2.8%), and GG (24.76%), while in the low fertile group of bulls, the frequencies distributions of observed BBD129 haplotypes (n=149 clones) were: TA (36.24%), GA (0%), TG (2.68%), and GG (61.07%). The distributions of TA haplotype were majorly distributed in bulls with a high conception rate (P=0.5256) while double mutated GG haplotype was significantly more abundant in bulls with a lower conception rate (P=0.0001). BBD129 exist as a single-copy gene in the bovine genome and found higher expression in the corpus-epididymis region. Bioinformatic analyses found nsSNPs as neutral and non-deleterious but their structural-distorter could result in altered mRNA secondary structure, protein conformations decreased protein stability, and compromised biological functionalities. The polymorphisms resulted in altered O-glycosylations (deletion S57A and insertion N110S) and an increase in phosphorylations (52T-Threonine and 110S-Serine) post-translational-modifications. ConclusionBBD129 gene polymorphism could be associated with the fertility performance of cattle bulls.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Gefei Xiao ◽  
Xianrong Qiu ◽  
Yuqiu Zhou ◽  
Gongjun Tan ◽  
Yao Shen

Abstract Objective We present a genetic analysis of an asymptomatic family with a 4q terminal deletion; we also review other similar published studies and discuss the genotype–phenotype correlation. Methods A karyotype analysis was performed on the amniotic fluid cells of a woman at 24 weeks of pregnancy and peripheral blood lymphocytes from both parents and their older son with the conventional G-banding technique. Chromosomal microarray analysis (CMA) testing was carried out for both parents and the fetus to analyze copy number variation (CNV) in the whole genome. Results The results showed no abnormalities in the karyotypes of the father and older son, and the karyotypes of the mother and fetus were 46,XX,del(4)(q35.1) and 46,XY,del(4)(q35.1), respectively. CMA results showed a partial deletion at the 4q terminus in both the fetus and mother. The deletion region of the fetus was arr[GRCh37] 4q35.1q35.2(186,431,008_190,957,460) × 1; the loss size of the CNV was approximately 4.5 Mb and involved 14 protein-coding genes, namely, CYP4V2, F11, FAM149A, FAT1, FRG1, FRG2, KLKB1, MTNR1A, PDLIM3, SORBS2, TLR3, TRIML1, TRIML2, and ZFP42. No variation on chromosome 4 was detected in the father’s CMA results. Conclusion Deletion of the 4q subtelomeric region is a familial variation. The arr[GRCh37] 4q35.1q35.2(186,431,008_190,957,460) region single-copy deletion did not cause obvious congenital defects or mental retardation. The application of high-resolution genetic testing technology combined with the analysis of public genetic database information can more clearly elucidate the genotype–phenotype correlation of the disease and provide support for both prenatal and postnatal genetic counseling.


Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 540 ◽  
Author(s):  
Rebecca S. Taylor ◽  
Rebekah L. Horn ◽  
Xi Zhang ◽  
G. Brian Golding ◽  
Micheline Manseau ◽  
...  

Rangifer tarandus, known as caribou or reindeer, is a widespread circumpolar species which presents significant variability in their morphology, ecology, and genetics. A genome was sequenced from a male boreal caribou (R. t. caribou) from Manitoba, Canada. Both paired end and Chicago libraries were constructed and sequenced on Illumina platforms. The final assembly consists of approximately 2.205 Gb, and has a scaffold N50 of 11.765 Mb. BUSCO (Benchmarking Universal Single-Copy Orthologs) reconstructed 3820 (93.1%) complete mammalian genes, and genome annotation identified the locations of 33,177 protein-coding genes. An alignment to the bovine genome was carried out, indicating sequence coverage on all bovine chromosomes. A high-quality reference genome will be invaluable for evolutionary research and for conservation efforts for the species. Further information about the genome, including a FASTA file of the assembly and the annotation files, is available on our caribou genome website. Raw sequence data is available at the National Centre for Biotechnology Information (NCBI), under the BioProject accession number PRJNA549927.


1992 ◽  
Vol 288 (3) ◽  
pp. 919-924 ◽  
Author(s):  
I Linhartová ◽  
P Dráber ◽  
E Dráberová ◽  
V Viklický

Individual beta-tubulin isoforms in developing mouse brain were characterized using immunoblotting, after preceding high-resolution isoelectric focusing, with monoclonal antibodies against different structural regions of beta-tubulin. Some of the antibodies reacted with a limited number of tubulin isoforms in all stages of brain development and in HeLa cells. The epitope for the TU-14 antibody was located in the isotype-defining domain and was present on the beta-tubulin isotypes of classes I, II and IV, but absent on the neuron-specific class-III isotype. The data suggest that non-class-III beta-tubulins in mouse brain are substrates for developmentally regulated post-translational modifications and that beta-tubulins of non-neuronal cells are also post-translationally modified.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1517
Author(s):  
Se-Hwan Cheon ◽  
Min-Ah Woo ◽  
Sangjin Jo ◽  
Young-Kee Kim ◽  
Ki-Joong Kim

The genus Zoysia Willd. (Chloridoideae) is widely distributed from the temperate regions of Northeast Asia—including China, Japan, and Korea—to the tropical regions of Southeast Asia. Among these, four species—Zoysia japonica Steud., Zoysia sinica Hance, Zoysia tenuifolia Thiele, and Zoysia macrostachya Franch. & Sav.—are naturally distributed in the Korean Peninsula. In this study, we report the complete plastome sequences of these Korean Zoysia species (NCBI acc. nos. MF953592, MF967579~MF967581). The length of Zoysia plastomes ranges from 135,854 to 135,904 bp, and the plastomes have a typical quadripartite structure, which consists of a pair of inverted repeat regions (20,962~20,966 bp) separated by a large (81,348~81,392 bp) and a small (12,582~12,586 bp) single-copy region. In terms of gene order and structure, Zoysia plastomes are similar to the typical plastomes of Poaceae. The plastomes encode 110 genes, of which 76 are protein-coding genes, 30 are tRNA genes, and four are rRNA genes. Fourteen genes contain single introns and one gene has two introns. Three evolutionary hotspot spacer regions—atpB~rbcL, rps16~rps3, and rpl32~trnL-UAG—were recognized among six analyzed Zoysia species. The high divergences in the atpB~rbcL spacer and rpl16~rpl3 region are primarily due to the differences in base substitutions and indels. In contrast, the high divergence between rpl32~trnL-UAG spacers is due to a small inversion with a pair of 22 bp stem and an 11 bp loop. Simple sequence repeats (SSRs) were identified in 59 different locations in Z. japonica, 63 in Z. sinica, 62 in Z. macrostachya, and 63 in Z. tenuifolia plastomes. Phylogenetic analysis showed that the Zoysia (Zoysiinae) forms a monophyletic group, which is sister to Sporobolus (Sporobolinae), with 100% bootstrap support. Within the Zoysia clade, the relationship of (Z. sinica, Z japonica), (Z. tenuifolia, Z. matrella), (Z. macrostachya, Z. macrantha) was suggested.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 921
Author(s):  
Aleksandra Lipka ◽  
Jan Pawel Jastrzebski ◽  
Lukasz Paukszto ◽  
Karol Gustaw Makowczenko ◽  
Elzbieta Lopienska-Biernat ◽  
...  

Impaired fetal growth is one of the most important causes of prematurity, stillbirth and infant mortality. The pathogenesis of idiopathic fetal growth restriction (FGR) is poorly understood but is thought to be multifactorial and comprise a range of genetic causes. This research aimed to investigate non-coding RNAs (lncRNAs) in the placentas of male and female fetuses affected by FGR. RNA-Seq data were analyzed to detect lncRNAs, their potential target genes and circular RNAs (circRNAs); a differential analysis was also performed. The multilevel bioinformatic analysis enabled the detection of 23,137 placental lncRNAs and 4263 of them were classified as novel. In FGR-affected female fetuses’ placentas (ff-FGR), among 19 transcriptionally active regions (TARs), five differentially expressed lncRNAs (DELs) and 12 differentially expressed protein-coding genes (DEGs) were identified. Within 232 differentially expressed TARs identified in male fetuses (mf-FGR), 33 encompassed novel and 176 known lncRNAs, and 52 DEGs were upregulated, while 180 revealed decreased expression. In ff-FGR ACTA2-AS1, lncRNA expression was significantly correlated with five DEGs, and in mf-FGR, 25 TARs were associated with DELs correlated with 157 unique DEGs. Backsplicing circRNA processes were detected in the range of H19 lncRNA, in both ff- and mf-FGR placentas. The performed global lncRNAs characteristics in terms of fetal sex showed dysregulation of DELs, DEGs and circRNAs that may affect fetus growth and pregnancy outcomes. In female placentas, DELs and DEGs were associated mainly with the vasculature, while in male placentas, disturbed expression predominantly affected immune processes.


2015 ◽  
Vol 43 (2) ◽  
pp. 32-40
Author(s):  
Magda E Alvarado ◽  
Camila A González ◽  
Moisés Wasserman ◽  
Claudia C Rubiano

This paper presents a combined approach<br />with two aims. The first is to analyze the<br />reported sequence of the enzyme ubiquitin<br />carboxyl-terminal hydrolase 14 of Giardia<br />intestinalis (UBP6) through computational<br />methods to find components related with<br />its hypothetical function. The second is<br />to determine if the protein-coding gene is<br />expressed in G. intestinalis and, if such is<br />the case, also determine its transcription<br />pattern along the life cycle of the parasite. It<br />was established that the protein belongs to<br />the family of Cys-dependent deubiquitinases<br />and more specifically to ubiquitin specific<br />proteases (USPs). Moreover, the catalytic<br />center with the complete triad as well as<br />typical features of the USP motif were also<br />identified. Since the computational findings<br />suggest that the enzyme could be functional,<br />reverse transcription coupled to PCR was<br />used as a first approach to establish if in fact<br />the coding gene is expressed in the parasite.<br />Interestingly, it was found not only that<br />the gene is expressed, but also that there<br />is a transcription variation along the life<br />cycle of the parasite. These two findings are<br />the starting point for further studies since<br />they tentatively suggest that this enzyme<br />could be involved in the protein turnover<br />that occurs during parasite encystation.<br />Although preliminary, this study is the first<br />report concerning the study of a specific<br />deubiquitinating enzyme in the parasite G.<br />intestinalis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fenghua Tian ◽  
Changtian Li ◽  
Yu Li

Yuanmo [Sarcomyxa edulis (Y.C. Dai, Niemelä &amp; G.F. Qin) T. Saito, Tonouchi &amp; T. Harada] is an important edible and medicinal mushroom endemic to Northeastern China. Here we report the de novo sequencing and assembly of the S. edulis genome using single-molecule real-time sequencing technology. The whole genome was approximately 35.65 Mb, with a G + C content of 48.31%. Genome assembly generated 41 contigs with an N50 length of 1,772,559 bp. The genome comprised 9,364 annotated protein-coding genes, many of which encoded enzymes involved in the modification, biosynthesis, and degradation of glycoconjugates and carbohydrates or enzymes predicted to be involved in the biosynthesis of secondary metabolites such as terpene, type I polyketide, siderophore, and fatty acids, which are responsible for the pharmacodynamic activities of S. edulis. We also identified genes encoding 1,3-β-glucan synthase and endo-1,3(4)-β-glucanase, which are involved in polysaccharide and uridine diphosphate glucose biosynthesis. Phylogenetic and comparative analyses of Basidiomycota fungi based on a single-copy orthologous protein indicated that the Sarcomyxa genus is an independent group that evolved from the Pleurotaceae family. The annotated whole-genome sequence of S. edulis can serve as a reference for investigations of bioactive compounds with medicinal value and the development and commercial production of superior S. edulis varieties.


2021 ◽  
Author(s):  
Jingting Liu ◽  
Mei Jiang ◽  
Haimei Chen ◽  
Yu Liu ◽  
Chang Liu ◽  
...  

AbstractStemona sessilifolia (Miq.) Miq., commonly known as Baibu, is one of the most popular herbal medicines in Asia. In Chinese Pharmacopoeia, Baibu has multiple authentic sources, and there are many homonym herbs sold as Baibu in the herbal medicine market. The existence of the counterfeits of Baibu brings challenges to its identification. To assist the accurate identification of Baibu, we sequenced and analyzed the complete chloroplast genome of Stemona sessilifolia using next-generation sequencing technology. The genome was 154,039 bp in length, possessing a typical quadripartite structure consisting of a pair of inverted repeats (IRs: 27,094 bp) separating by a large single copy (LSC: 81,950 bp) and a small single copy (SSC: 17,901 bp). A total of 112 unique genes were identified, including 80 protein-coding, 28 transfer RNA, and four ribosomal RNA genes. Besides, 45 tandem, 27 forward, 23 palindromic, and 72 simple sequence repeats were detected in the genome by repeat analysis. Compared with its counterfeits (Asparagus officinalis and Carludovica palmate), we found that IR expansion and SSC contraction events of Stemona sessilifolia resulted in two copies of the rpl22 gene in the IR regions and partial duplication of the ndhF gene in the SSC region. Secondly, an approximately 3-kb-long inversion was identified in the LSC region, leading to the petA and cemA gene presented in the complementary strand of the chloroplast DNA molecule. Comparative analysis revealed some highly variable regions, including trnF-GAA_ndhJ, atpB_rbcL, rps15_ycf1, trnG-UCC_trnR-UCU, ndhF_rpl32. Finally, gene loss events were investigated in the context of phylogenetic relationships. In summary, the complete plastome of Stemona sessilifolia will provide valuable information for the molecular identification of Baibu and assist in elucidating the evolution of Stemona sessilifolia.


2020 ◽  
Vol 14 (12) ◽  
pp. e0008966
Author(s):  
Anja de Lange ◽  
Ulrich Fabien Prodjinotho ◽  
Hayley Tomes ◽  
Jana Hagen ◽  
Brittany-Amber Jacobs ◽  
...  

Larvae of the cestodes Taenia solium and Taenia crassiceps infect the central nervous system of humans. Taenia solium larvae in the brain cause neurocysticercosis, the leading cause of adult-acquired epilepsy worldwide. Relatively little is understood about how cestode-derived products modulate host neural and immune signalling. Acetylcholinesterases, a class of enzyme that breaks down acetylcholine, are produced by a host of parasitic worms to aid their survival in the host. Acetylcholine is an important signalling molecule in both the human nervous and immune systems, with powerful modulatory effects on the excitability of cortical networks. Therefore, it is important to establish whether cestode derived acetylcholinesterases may alter host neuronal cholinergic signalling. Here we make use of multiple techniques to profile acetylcholinesterase activity in different extracts of both Taenia crassiceps and Taenia solium larvae. We find that the larvae of both species contain substantial acetylcholinesterase activity. However, acetylcholinesterase activity is lower in Taenia solium as compared to Taenia crassiceps larvae. Further, whilst we observed acetylcholinesterase activity in all fractions of Taenia crassiceps larvae, including on the membrane surface and in the excreted/secreted extracts, we could not identify acetylcholinesterases on the membrane surface or in the excreted/secreted extracts of Taenia solium larvae. Bioinformatic analysis revealed conservation of the functional protein domains in the Taenia solium acetylcholinesterases, when compared to the homologous human sequence. Finally, using whole-cell patch clamp recordings in rat hippocampal brain slice cultures, we demonstrate that Taenia larval derived acetylcholinesterases can break down acetylcholine at a concentration which induces changes in neuronal signalling. Together, these findings highlight the possibility that Taenia larval acetylcholinesterases can interfere with cholinergic signalling in the host, potentially contributing to pathogenesis in neurocysticercosis.


Sign in / Sign up

Export Citation Format

Share Document