scholarly journals Characterization of Newcastle Disease Virus in Broiler Flocks with Respiratory symptoms in some Provinces of Iran

Author(s):  
Foroogh Makki ◽  
Zahra Boroomand ◽  
Mansour Mayahi ◽  
Masoud Reza Seyfi Abad Shapouri

Abstract Background: Newcastle disease, is one of the most important diseases of the poultry industry, has many economic losses. The aim of this study was to isolate and determine the molecular identity of Newcastle disease virus in 40 broiler flocks with respiratory symptoms in four provinces of Iran.Methods and Results: Samples of farms with respiratory symptoms were collected from different regions of Isfahan, East Azerbaijan, Golestan, and Khuzestan provinces and inoculated into 9-day-old embryonated chicken eggs. The Reverse-transcription polymerase chain reaction (RT-PCR) was performed to detect the Newcastle disease virus on allantoic fluid. Of the 40 flocks, the virus was isolated and identified in 16 flocks. The PCR products of 16 isolates were sequenced and a phylogenetic tree was drawn. Accordingly, six isolates were in genotype II and ten isolates were in subgenotype VIId of class II. Conclusion: Both genotypes were present in all four provinces. The isolates of Khuzestan province showed the greatest diversity compared to the other three provinces. The similarity of isolates belonging to genotype II in this study was observed with Pakistan, China, and Nigeria and other isolates were similar to previous isolates in Iran. Also, the highest amino acid sequence in the F-protein cleavage site was 112RRQKR/F117 for VIId genotype isolates and 112GRQGR/L117 for II genotype isolates.

2020 ◽  
Author(s):  
Soonham Sami Yaghmoor` ◽  
Taha Abdullah Kumosani ◽  
Elie Kamil Barbour ◽  
Othman Abubaker Baothman

Abstract Background The velogenic-Newcastle Disease Virus (v-NDV) causes an important disease in chicken, associated with serious economic losses to the global poultry industry. This research evaluated the immunity in broilers administered a developed bivalent vaccine, aiming at protection against predominant Middle Eastern strains of genotypes VI and VII of v-NDV. The completely randomized design implemented in this evaluation included eight treatments, differing in birds being administered or deprived of the developed vaccine, with a difference in type of challenge, either by v-NDV strain(s) of genotype VI, VII, or both. Vaccination was administered subcutaneously at 6 and 21 d of age, followed by an intra-pectoral challenge at the age of 28 d. Results The acquired humoral immunity by vaccinated and challenged birds to Hemagglutinin (H) protein was the highest at market age of 40 d, compared to challenged birds deprived of vaccination, and to vaccinates deprived of challenge (P<0.05). The same statistical difference pattern was obtained by the cell-mediated immunity (CMI), represented by birds’ level of serum IFN- γ . The type of challenge by either strain(s) of genotype VI, VII, or VI+VII did affect statistically the cross reactivity of acquired humoral immunity specific to H protein of homologous versus heterologous strains. The absence of humoral immunity and the low IFN- γ levels at 28 d of age in challenged birds deprived of vaccination lead to highest mortality, and lowest performance compared to vaccinates and challenged, vaccinates and deprived of challenge, and unvaccinated-unchallenged birds (P<0.05). Conclusions The developed bivalent vaccine was able to induce enough humoral and CMI responses, enabling protection of the broilers against production losses by each of the three types of v-NDV challenges. It is recommended to conduct future studies to evaluate such types of vaccines in chicken breeders and commercial layers, reared in various world’s zones with existing endemicity of v-NDV.


2021 ◽  
Author(s):  
Manolo Fernandez Díaz ◽  
Katherine Calderon ◽  
Aldo Rojas-Neyra ◽  
Vikram N. Vakharia ◽  
Ricardo Choque-Guevara ◽  
...  

ABSTRACTThe COVID-19 pandemic has claimed the lives of millions of people worldwide and threatens to become an endemic problem, therefore the need for as many types of vaccines as possible is of high importance.Because of the millions of doses required, it is desirable that vaccines are not only safe and effective, but also easy to administer, store, and inexpensive to produce.Newcastle Disease Virus (NDV) is responsible for a respiratory disease in chickens. It has no pathogenic homologue in humans. NDV is recognized as an oncolytic virus, and its use in humans for oncological treatment is being evaluated.In the present work, we have developed two types of NDV-vectored candidate vaccines, which carry the surface-exposed RBD and S1 antigens of SARS-CoV-2, respectively. These vaccine candidates were produced in specific-pathogen-free embryonating chicken eggs, and purified from allantoic fluid before lyophilization. These vaccines were administered intranasally to three different animal models: mice, rats and hamsters, and evaluated for safety, toxicity, immunogenicity, stability and efficacy. Efficacy was evaluated in a challenge assay against active SARS-CoV-2 virus in the Golden Syrian hamster model.The NDV-vectored vaccine based on the S1 antigen was shown to be safe and highly immunogenic, with the ability to neutralize SARS-CoV-2 in-vitro, even with an extreme dilution of 1/640. Our results reveal that this vaccine candidate protects the lungs of the animals, preventing cellular damage in this tissue. In addition, this vaccine reduces the viral load in the lungs, suggesting that it may significantly reduce the likelihood of transmission. Being lyophilized, this vaccine candidate is very stable and can be stored for several months at 4-8⁰C.In conclusion, our NDV-based vaccine candidate has shown a very favorable performance in the pre-clinical study, serving as evidence for a future evaluation in a Phase-I human clinical trial. This candidate represents a promising tool in the fight against COVID-19.


Author(s):  
Smita Bordoloi ◽  
Anju Nayak ◽  
A.P. Singh ◽  
R.V. Singh ◽  
Kajal Jadav ◽  
...  

Background: Newcastle disease (ND) in spite of the availability of vaccines remains a constant threat to poultry producers worldwide. It is prevalent in Indian subcontinent and leads to economic losses. The present study was aimed with isolate and identify virulent Newcastle disease virus (NDV) in layer poultry from field outbreaks.Methods: Total 47 samples consisting of nasal (05), oropharyngeal (13) and cloacal swabs (11) and tissue samples consisting of trachea (07), lungs (06), larynx (05) were collected from layer birds. For isolation of NDV swab and tissue samples were inoculated in 9-11 days old embryonated eggs via allantoic cavity route. After preparing the viral inoculum, 47 suspected samples (29 swab and 18 tissue samples) were inoculated in 141 embryonated eggs to isolate the virus.Result: Out of 47 samples 10 (21.27%) samples were positive for HA activity. All the 10 isolates showing HA activity subjected to Reverse-Transcriptase PCR of F gene and 6 were found positive in RT-PCR for F1 gene. The PCR amplified product showed amplicon at 356 bp and 254 bp positive for F1 and F2 gene, respectively. On basis of F gene, 06 (50%) isolates were considered as virulent Newcastle Disease Virus. One isolate sequence was submitted at NCBI with accession MT890653 On phylogenetic analysis MT890653 designated as Class II/ genotype II/ virulent strain and had the motif 112R-R-R-K-R-F117 at the cleavage site of the fusion protein.


2017 ◽  
Vol 91 (16) ◽  
Author(s):  
Udaya S. Rangaswamy ◽  
Weijia Wang ◽  
Xing Cheng ◽  
Patrick McTamney ◽  
Danielle Carroll ◽  
...  

ABSTRACT Newcastle disease virus (NDV) is an oncolytic virus being developed for the treatment of cancer. Following infection of a human ovarian cancer cell line (OVCAR3) with a recombinant low-pathogenic NDV, persistent infection was established in a subset of tumor cells. Persistently infected (PI) cells exhibited resistance to superinfection with NDV and established an antiviral state, as demonstrated by upregulation of interferon and interferon-induced genes such as myxoma resistance gene 1 (Mx1) and retinoic acid-inducing gene-I (RIG-I). Viruses released from PI cells induced higher cell-to-cell fusion than the parental virus following infection in two tumor cell lines tested, HT1080 and HeLa, and remained attenuated in chickens. Two mutations, one in the fusion (F) protein cleavage site, F117S (F117S), and another in hemagglutinin-neuraminidase (HN), G169R (HN169R), located in the second sialic acid binding region, were responsible for the hyperfusogenic phenotype. F117S improves F protein cleavage efficiency, facilitating cell-to-cell fusion, while HN169R possesses a multifaceted role in contributing to higher fusion, reduced receptor binding, and lower neuraminidase activity, which together result in increased fusion and reduced viral replication. Thus, establishment of persistent infection in vitro involves viral genetic changes that facilitate efficient viral spread from cell to cell as a potential mechanism to escape host antiviral responses. The results of our study also demonstrate a critical role in the viral life cycle for the second receptor binding region of the HN protein, which is conserved in several paramyxoviruses. IMPORTANCE Oncolytic Newcastle disease virus (NDV) could establish persistent infection in a tumor cell line, resulting in a steady antiviral state reflected by constitutively expressed interferon. Viruses isolated from persistently infected cells are highly fusogenic, and this phenotype has been mapped to two mutations, one each in the fusion (F) and hemagglutinin-neuraminidase (HN) proteins. The F117S mutation in the F protein cleavage site improved F protein cleavage efficiency while the HN169R mutation located at the second receptor binding site of the HN protein contributed to a complex phenotype consisting of a modest increase in fusion and cell killing, lower neuraminidase activity, and reduced viral growth. This study highlights the intricate nature of these two mutations in the glycoproteins of NDV in the establishment of persistent infection. The data also shed light on the critical balance between the F and HN proteins required for efficient NDV infection and their role in avian pathogenicity.


2018 ◽  
Vol 251 ◽  
pp. 1-6
Author(s):  
Valerie Marcano ◽  
Stivalis Cardenas-Garcia ◽  
Robert M. Gogal ◽  
Claudio L. Afonso

2008 ◽  
Vol 131 (2) ◽  
pp. 299-303 ◽  
Author(s):  
Zhuoming Qin ◽  
Lei Sun ◽  
Baochen Ma ◽  
Zhizhong Cui ◽  
Yiping Zhu ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1606
Author(s):  
Xiaorong Zhang ◽  
Zongyi Bo ◽  
Chenchen Meng ◽  
Yin Chen ◽  
Chengcheng Zhang ◽  
...  

H9N2 avian influenza virus (AIV) has become endemic in many countries, causing great economic losses when co-infected with other pathogens. So far, several live vaccines based on Newcastle disease virus (NDV) vectors expressing influenza hemagglutinin (HA) have been developed. However, the thermostable recombinant NDV is rarely reported. In this study, using a thermostable NDV rAHR09 strain as the vector, three recombinant NDVs expressing native HA, chimeric HA ectodomain with transmembrane domain/C-terminal cytoplasmic tail domain from fusion protein of NDV, and HA ectodomain were generated, designated rAHR09-HA, rAHR09-HAF, and rAHR09-HAE. The MDT value of three recombinant NDVs was above 120 h, their ICPI value was about 0.03, and the recombinant NDVs were still infectious when treated for 100 min under 56 °C, which demonstrated that the recombinant NDVs kept the lentogenic and thermostable nature of rAHR09. The immunization data showed that rAHR09-HA and rAHR09-HAF induced a higher HI antibody titer against H9N2 AIV and NDV. After being challenged with H9N2 AIV, the rAHR09-HA and rAHR09-HAF could significantly reduce the virus shedding in cloacal and tracheal swab samples. Our results suggest that rAHR09-HA and rAHR09-HAF might be vaccine candidates against H9N2 AIV.


2020 ◽  
Author(s):  
Zaib Ur Rehman ◽  
Shanhui Ren ◽  
Salman Latif Butt ◽  
Muhammad Naveed Anwar ◽  
Yingjie Sun ◽  
...  

Abstract Background: Newcastle disease virus (NDV) causes a highly contagious and devastating disease in poultry, Newcastle disease (ND), which is particularly characterized by extensive pathologies in the digestive, respiratory and nervous systems. ND cause heavy economic losses to the world poultry industry by decreasing growth rate, decrease egg productions, mortality and morbidity. Although, significant advances have been made in the vaccine development, but outbreaks are reported in vaccinated birds leading decrease growth rate. Methods: In this study, we report the damage caused by the NDV infection in the pancreas of vaccinated as well specific pathogen free chickens. Results: The histopathological examination of the pancreas showed sever damage in the form of partial depletion of zymogen granules, acinar cell vacuolization, necrosis, and apoptosis, congestion in the large and small vessels, sloughing of epithelial cells of pancreatic duct, and mild perivascular edema. Increased plasma levels of corticosterone, somatostatin, were observed in NDV infected chicks at 3 and 5-day post infection (DPI). Slight decrease in the plasma concentrations of the insulin were noticed at 5 DPI. Significant changes were not observed in the plasma levels of glucagon. Furthermore, NDV infection has decreases the activity and mRNA expression of amylase, lipase, and trypsin from the pancreas. Conclusion: Taken together, our findings highlight that NDV induces extensive tissue damage in pancreas, decrease the activity and expression of pancreatic enzymes and increase plasma corticosterone and somatostatin.


2018 ◽  
Vol 5 (6) ◽  
Author(s):  
Fady Samir ◽  
Rania F. El Naggar ◽  
Mohamed M. Hamoud ◽  
Manal M. Zaki ◽  
Abdulrhman M. Gamal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document