scholarly journals Pharmacokinetics of the Couple of Radix Aconiti Lateralis Preparata and Cinnamomum Cassia in Rats with Osteoporosis with Kidney-yang Deficiency by UPLC and Microdialysis Method

Author(s):  
Yuxiao Meng ◽  
Jiaqi Guan ◽  
Liping Yao ◽  
Xiaojun Li ◽  
Luping Qin ◽  
...  

Abstract Background: To confirm the metabolites of the Aconite and Cinnamon herb couple in rat, and characterize its pharmacokinetics.Methods: Microdialysis probes were inserted into the jugular vein and knee joint of Sprague Dawley rat, and dialysates of different administration groups were collected. Target analytes were separated on a hydrophilic interaction liquid chromatography column (ACQUITY UPLC BEH C8 2.1×100 mm, 1.7 μm) and analyzed with an ultra-performance liquid chromatography (UPLC) under multiple reaction monitoring modes.Results: The experiment shows that the concentrations of quality of the three metabolites in mixing extraction of the herb couple were 0.3701% for trans-cinnamic acid, 0.1249 % for mesaconitine, and 0.0469 % for hypoaconitine, and Cinnamon group was 0.1731 % for trans-cinnamic acid, Aconite group were 0.0017 % for mesaconitine, and 0.0300 % for hypoaconitine. The concentrations of quality of the metabolites in rat plasma of the herb couple group were 0.0028% for trans-cinnamic acid, 0.0947% for mesaconitine, and 0.1124% for hypoaconitine. And the concentrations of quality of Aconite group and Cinnamon group were 0.0019% for trans-cinnamic acid, 0.0307% for mesaconitine, and 0.0220% for hypoaconitine. Pharmacokinetic results showed that the mean half-lives of the microdialysis samples of blood of Cinnamon group was 492.18 min for trans-cinnamic acid, and Aconite group were 102.48 min for mesaconitine and 93.27 min for hypoaconitine, and the herb couple ware 181.36 min for trans-cinnamic acid, 103.9 min for mesaconitine and 116.01 min for hypoaconitine, and the microdialysis samples of joint of Cinnamon group was 190.85 min for trans-cinnamic acid, and Aconite group were 48.51 min for mesaconitine and 46.01 min for hypoaconitine, and the herb couple was 131.19 min for trans-cinnamic acid, 49.36 min for mesaconitine and 146.68 min for hypoaconitine.Conclusions: The mixed extraction of aconite and cinnamon can promote the dissolution of the active ingredients. The herb couple can promote the absorption of the active ingredients, improve the distribution of the active ingredients in the joint and blood, prolong the half-lives of the active ingredients. It shows that the compatibility of aconite and cinnamon can increase the bioavailability of the drug and improve the clinical efficacy.

2020 ◽  
Vol 32 (1) ◽  
pp. 49-52
Author(s):  
Xi Bao ◽  
Bingge Huang ◽  
Yiting Mao ◽  
Zhiguang Zhang ◽  
Yunfang Zhou ◽  
...  

Byakangelicol is one of coumarins from Baizhi and has been shown to inhibit the release of PGE2 from human lung epithelial A549 cells in a dose-dependent manner. A sensitive ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed and full validated for the quantification of byakangelicol in rat plasma. The pharmacokinetics of byakangelicol after both intravenous (5 mg/kg) and oral (15 mg/kg) administrations were studied. Chromatographic separation was performed on an ultra-performance liquid chromatography ethylene bridged hybrid (UPLC BEH) C18 column with acetonitrile and 0.1% formic acid as the mobile phase at a flow rate of 0.4 mL/min; fargesin was used as the internal standard (IS). The following quantitative analysis of byakangelicol was utilized in the multiple reaction monitoring mode. The samples were extracted from rat plasma via protein precipitation using acetonitrile. In the concentration range of 1–2000 ng/mL, the method correlated linearity (r > 0.995) with a lower limit of quantitation (LLOQ) of 1 ng/mL. Intra-day precision was less than 11%, and inter-day precision was less than 12%. The accuracy was between 92.0% and 108.7%, the recovery was better than 89.6%, and the matrix effect was between 85.9% and 98.6%. The method was successfully applied to a pharmacokinetic study of byakangelicol after intravenous and oral administration, and the absolute bioavailability was 3.6%.


2020 ◽  
Vol 16 (4) ◽  
pp. 438-445 ◽  
Author(s):  
Haili Xie ◽  
Xiaojie Lu ◽  
Weiqiang Jin ◽  
Hua Zhou ◽  
Dongxin Chen ◽  
...  

Background: Modern pharmacological studies show that rhizoma coptidis has protective effects on the liver, gallbladder, kidney, cerebral ischemia-reperfusion, local hypoxia injury, antiinflammatory, bone injury, nerve cells and myocardial cells. The effective components have been isolated from picroside I, II, III and IV. Introduction: A selective and sensitive ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) method was developed for the simultaneous quantitative determination of picroside I, II, III and IV in rat plasma to aid the pharmacokinetics studies. Method: Sprague-Dawley (SD) rats were orally administered with 10 mg/kg, intravenously injected with 1 mg/kg for the mixture of picroside I, II, III and IV. The biological samples were collected at 0.083 3 h, 0.25 h, 1 h, 2 h, 4 h, 6 h, 8 h, 12 h, 24 h. A UPLC BEH C18 column (2.1 mm×50 mm, 1.7 μm) was used for chromatographic separation with the mobile phase consisting of acetonitrile and 0.1% formic acid by gradient elution. The flow rate was 0.4 mL/min. Multiple reaction monitoring (MRM) transitions were m/z 491.1→147.1 for picroside I, m/z 511.1→234.9 for picroside II, m/z 537.3→174.8 for picroside III and m/z 507.3→163.1 for picroside IV in negative ion mode. Result: The inter-day precision was less than 13%, the intra-day precision was less than 15%. The accuracy ranged from 89.4% to 111.1%. Recovery was higher than 79.1%, and the matrix effect ranged from 96.2% to 109.0%. Conclusion: The sensitive, rapid and selective UPLC-MS/MS method can be applied to the pharmacokinetic study of picroside I, II, III and IV in rats.


2019 ◽  
Vol 15 (3) ◽  
pp. 231-242
Author(s):  
Ping Wang ◽  
Shenmeng Jiang ◽  
Yu Zhao ◽  
Shuo Sun ◽  
Xiaoli Wen ◽  
...  

Background: It is urgently needed to clarify the pharmacokinetic mechanism for the multibioactive constituents in Traditional Chinese Medicines for its clinical applications. A rapid, sensitive and reliable ultra-performance liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of Danshensu, Ferulic acid, Astragaloside IV, Naringin, Neohesperidin and Puerarin after oral administration of Naoshuantong Granule using Carbamazepine as internal standard (IS). Methods: The plasma samples were pretreated by liquid-liquid extraction method using ethyl acetate after acidification, and separated on a Waters ACQUITY UPLC® BEH C18 column (50×2.1 mm, i.d., 1.7 µm) by gradient elution with a mobile phase composing of water (containing 0.1% formic acid) and acetonitrile at a flow rate of 0.2 mL/min. Multiple reaction monitoring (MRM) mode with both positive and negative ion mode was operated using an electrospray ionization (ESI) to detect the six compounds. Result: All calibration curves showed good linearity (r>0.99) over a wide concentration range. The intra- and inter-day precision (RSD%) was below 8.4% and the accuracy (RE%) ranged from 91.1% to 107.5%. The extraction recoveries of the six analytes and IS in the plasma were more than 77.9% and no severe matrix effect was observed. Conclusion: The fully validated method was successfully applied to the pharmacokinetics of Naoshuantong Granule.


Author(s):  
Jinzhao Yang ◽  
Huamin Liu ◽  
Yuan Cai ◽  
Yazhen Wu ◽  
Xiaoxin Xu ◽  
...  

AbstractTwelve Sprague-Dawley rats were randomly divided into two groups: Citrus suavissima Hort. ex Tanaka group and control group (n = 6). The rats in Citrus suavissima Hort. ex Tanaka group were given Citrus suavissima Hort. ex Tanaka juices (1 mL/100 g) by oral administration each day, continued for 14 days; the rats in control group were given Stroke-physiological saline solution (1 mL/100 g) by oral administration each day, continued for 14 days. The rats of these two groups were given a single oral administration of erlotinib (20 mg/kg) on the 15th day. After blood sampling at different time points and processing, the concentrations of erlotinib in rat plasma were determined by the established ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. Chromatographic separation was achieved using a UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 μm) with erlotinib-d6 as an internal standard (IS). The initial mobile phase consisted of acetonitrile and water (containing 0.1% formic acid) with gradient elution. Multiple reaction monitoring (MRM) modes were utilized to conduct quantitative analysis. The sensitive, rapid and selective UPLC-MS/MS method was successfully applied to analyse the effect of Citrus suavissima Hort. ex Tanaka on pharmacokinetics of erlotinib in rat plasma. There were no significant differences in AUC(0−t), t1/2, Tmax, CL, Cmax between the two groups (P > 0.05). While MRT(0−t) was decreased (P < 0.05) in Citrus suavissima Hort. ex Tanaka group, compared to the control group. It showed that Citrus suavissima Hort. ex Tanaka could not affect the metabolism of erlotinib.


2011 ◽  
Vol 94 (6) ◽  
pp. 1778-1784 ◽  
Author(s):  
Feng Qin ◽  
Jun Huang ◽  
Xinjian Qiu ◽  
Sihang Hu ◽  
Xi Huang

Abstract A simple, sensitive, and reliable ultra-performance liquid chromatography (UPLC) method has been developed for simultaneous determination of 22 major constituents in modified xiaoyao san (MXS), a multiherbal formula. The chromatographic separation was performed on an ACQUITY UPLC BEH C18 column (150 × 2.1 mm, 1.7 μm, particle size), with an aqueous 0.5% acetic acid and acetonitrile mobile phase gradient. The method was validated for linearity (r2 &gt;0.9937), intraday and interday precision (RSD &lt;8.51%), recovery (91.18–107.73%), LOD (0.02–4.17 ng/mL), and LOQ (0.05–12.50 ng/mL). The established method was successfully applied to quantify the 22 marker compounds in MXS, which provided a useful basis of overall evaluation of the quality of MXS.


2019 ◽  
Vol 15 (5) ◽  
pp. 505-510
Author(s):  
Yanjuan Zheng ◽  
Qiushi Peng ◽  
Rui Dong ◽  
Tingyu Chen ◽  
Yi Bao ◽  
...  

Introduction: A rapid, and accurate Ultra Performance Liquid Chromatography (UPLC) method was developed to simultaneously analyze Methocarbamol, Paracetamol and the related substances Materials and Methods: Waters ACQUITY UPLC® BEH Phenyl C18 column was used in conjunction with UV detection at 225nm. Gradient elution with 0.05M, pH 6 phosphate buffer and acetonitrile flow at 0.3mL /min rate were used to separate the substances. The retention times for 4-Aminopheno, Paracetamol, Guaifenesin, Methocarbamol, and 4-Chloroacetanilide were 1.319 minute, 2.224 minute, 4.467 minute, 4.769 minute and 5.433 minute respectively. The concentration was linear in the range of 2-100 µg/ml for Methocarbamol, and 1-100 µg/mL for Paracetamol. The percentage recoveries were between 99.28±1.23% to 100.57±0.99% for Methocarbamol, and between 99.08±1.23% to 101.23±1.39% for Paracetamol. Results and Discussion: The validated optimal protocol is robust and accurate for simultaneous analysis of Methocarbamol, Paracetamol and the related substances, applicable for bulk powder as well as pharmaceutical formulation. Conclusion: In this paper, a highly sensitive, accurate, and precise UPLC method with UV-Vis detection was developed and validated for quality control of MET and PAR in bulk as well as in pharmaceutical preparations.


Author(s):  
Aslam Burhan ◽  
Bhavin Vyas

<p><strong>Objective: </strong>To develop and validate simple, sensitive and selective ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS) method for quantification of rifampicin (RIF) in rat plasma and its application to pharmacokinetics study.</p><p><strong>Methods: </strong>Precipitation method was used for the extraction of plasma samples, an aliquot of 25 µl plasma samples was extracted using acetonitrile precipitation technique. Chromatographic separation was performed usingWaters Acquity<sup>TM</sup>UPLC columns, BEH C18 (50 mm× 2.1 mm, 1.7 µm) by a gradient mixture of acetonitrile and water (both containing 0.1 % formic acid) as a mobile phase at the flow rate of 0.7 ml/min.The analyte was protonated in the positive ESI (electrospray ionization interface) and detected in MRM (multiple reactions monitoring) modes using the transition m/z 308.60-455.30.</p><p><strong>Results: </strong>The method had a short chromatography run time of 1.8 min with improved sensitivity over existing methods. Calibration curves been linear over the wide range of 1.97-5047.00 ng/ml. The between and within-batch precision and accuracy of the method was determined by using 4 quality control samples; the highest %CV observed was10.11. The mean recovery values are 74.26, 82.77 and 101.73 at low, medium and high-quality control levels; respectively.</p><p><strong>Conclusion: </strong>It was concluded that the developed and validated UPLC-MS/MS method was sensitive,specific, precise, linear, and rapid. Therefore, the method can be used for quantification of RIFin rat plasma with various advantages over the reported methods. RIF is widely recommended by US-FDAguidance for industry on drug interaction studies and the developed method can be used to explore drug interaction studies in drug discovery and development.</p>


Author(s):  
Yonghui Shen ◽  
Deru Meng ◽  
Feifei Chen ◽  
Hui Jiang ◽  
Liming Hu ◽  
...  

AbstractSarecycline is a narrow-spectrum antibiotic for the treatment of acne, which is a chronic inflammatory disease of the hair follicle sebaceous glands. In the study, UPLC-MS/MS was used to establish a rapid and accurate analytical method. The sarecycline was determined with poziotinib as internal standard (IS) in rat plasma. An ACQUITY UPLC HSS T3 column (2.1 × 100 mm, 1.8 μm) could performe chromatographic separation with the mobile phase (methanol: water of 0.1% formic acid) with gradient elution. The ions of target fragment were m/z 488.19→410.14 for sarecycline and m/z 492.06→354.55 for poziotinib, which could quantify the electrospray ionization of positive multiple reaction monitoring (MRM) mode. The linear calibration curve of the concentration range was 1–1,000 ng/mL for sarecycline with a lower limit of quantification (LLOQ) of 1 ng/mL. The mean recovery was between 82.46 and 95.85% for sarecycline and poziotinib in rat plasma. RSD for precision of inter-day and intra-day were between 3.24 and 13.36%, and the accuracy ranged from 105.26 to 109.75%. The developed and validated method was perfectly used in the pharmacokinetic study and bioavailability of sarecycline after intravenous and oral administration in rats.


Sign in / Sign up

Export Citation Format

Share Document