scholarly journals Evaluation of the Probiotic Potential of Weissella Confusa Isolated From Traditional Fermented Rice

2020 ◽  
Author(s):  
Soumitra Nath ◽  
Monisha Roy ◽  
Jibalok Sikidar ◽  
Bibhas Deb

Abstract Background: Probiotic are microorganism that is good for health, especially for the digestive system and can be consumed through fermented foods or supplements. The study aims to identify potential probiotic bacteria from fermented rice sample that are commonly found in Cachar district of Assam, India.Methods: White rice sample of “Ranjit” variety was collected from the local market, cooked in the laboratory and soaked overnight in sterile water for microbial fermentation. Probiotic properties of isolates were tested, and was identified by biochemical tests and 16S rRNA sequencing. In-vitro tests were also performed to demonstrate their colonisation properties, haemolytic activity and antagonistic activity against other pathogens.Results: The predominant fermentative-bacteria was identified as Weissella confusa strain GCC_19R1 (GenBank: MN394112). The isolate showed significant growth in the presence of artificial gastric-juice, bile and pancreatin. A moderate percentage of hydrophobicity (35.8% for n-hexadecane and 32.56% for toluene) and autoaggregation (38.7%) was also recorded. The strain survived well at acidic pH, 12.5% NaCl, and able to ferment glucose. The strain fulfilled the safety criteria concerning haemolytic activity, inhibits the growth of other bacteria, and found to be resistant towards antibiotics that are commonly used for GI-tract infections.Conclusion: The present study reports the prevalence of W. confusa in fermented rice samples. The finding of also supports the indegenious knowledge of fermented products, and its nutritional health benefits.

2020 ◽  
Vol 4 (4) ◽  
pp. 213-223
Author(s):  
Soumitra Nath ◽  
Jibalok Sikidar ◽  
Monisha Roy ◽  
Bibhas Deb

Abstract Objectives The screening of traditional fermented products is essential for the assessment of safety, security, and further development of functional foods for the well-being of human health. The aim of the present study was to isolate and identify bacteria from fermented raw milk samples that exhibit health benefits upon consumption. Methods In order to confirm the isolates as probiotics, several in vitro assays were conducted to assess the probiotic properties of isolated bacteria. The initial screening includes tolerance to acid, bile, pancreatin, and NaCl. The cell surface properties demonstrate their interaction with mucosal epithelium, which includes hydrophobicity and auto-aggregation assay. Safety assessment was done by performing haemolytic test and antibiotic susceptibility test. The antagonistic activity of probiotic strain was further evaluated against some pathogenic bacteria. Results Lactobacillus plantarum (L. plantarum) isolated from fermented raw milk was preliminarily identified by biochemical tests and further confirmed using 16S rRNA identification. The isolate designated as L. plantarum strain GCC_19M1 demonstrated significant tolerance to low pH, 0.3% bile, 0.5% pancreatin, and 5% NaCl. In the presence of simulated gastric juice (at pH 3), the isolate exhibited a survival rate of 93.48–96.97%. Furthermore, the development of ecological niches in the human gut and their successful accumulation have been revealed by auto-aggregation and hydrophobicity properties. Absence of haemolytic activity ensures the non-virulent nature of the strain. Lactobacillus plantarum strain GCC_19M1 showed susceptibility towards gentamicin, tetracycline, kanamycin, meropenem, and ceftriaxone and exhibited an antagonistic effect on pathogenic bacteria. Conclusion The obtained results conveyed that L. plantarum strain GCC_19M1 has strong probiotic potential, and its presence in the fermented raw milk products may serve as a potent functional probiotic food.


Author(s):  
A. M. Adisa ◽  
B. O. T. Ifesan ◽  
V. N. Enujiugha ◽  
A. B. Adepeju

Background: The term probiotics have been described as live microorganisms associated with fermented foods that confer health benefit to the host. For a long time, researches into the world of probiotics have extensively and predominantly centred upon species of lactic acid bacteria and until recently Saccharomyces cerevisiae, as the only well-defined and proven probiotic yeast strain. The purpose of this study was to isolate and characterise the yeast species associated with the fermentation of wholegrain millet sourdoughs and investigate in vitro the possible probiotic potential of the isolates. Methodology: Wholegrain millet sourdoughs were prepared by spontaneous fermentation of the flours with tap water in the ratio 1:1 (w/v) for 48 h at 28 ± 2ºC through backslopping. A total of twenty five yeasts were identified based on their cultural, morphological and biochemical characteristics. The selected isolates were characterized to species level using API 20 C AUX test identification kit. Probiotic properties examined included bile salt and acid tolerance under conditions simulating the human gastrointestinal tract (GIT) and positive antagonistic activity against selected pathogens following well established procedures. Results: The selected isolates investigated were characterized to belong to species of Saccharomyces and Kluveromyces. All of the isolates were discovered to exhibit sufficient survival under acidic pH of 2.0 with values ranging from 1.0log cfu ml-1 to 7.8log cfu ml-1 and showed high resistance to bile salt with values ranging from 63-99%. They also exhibited good antimicrobial activity against enteric pathogens of E. coli, Salmonella typhimurium, Staphylococcus aureus, Klebsiella pneumonia, Streptococcus pyogenes, Proteus vulgaris and Pseudomonas sp. Conclusion: Millet sourdoughs can serve as an affordable nutritionally healthy substrate for delivery of probiotics to the gastro-intestinal tract, thereby proffering basic health functionality. This study allowed to isolate and to identify yeast species present in millet sourdoughs with technological potential for sourdough applications.


10.5219/1479 ◽  
2021 ◽  
Vol 15 ◽  
pp. 143-150
Author(s):  
Saad Sabah Fakhry ◽  
Farqad Abdullah Rashid ◽  
Maha Muhamaed Khudiar ◽  
Lubna Ayad Ismail ◽  
Sarah Khattab Ismail ◽  
...  

An isolated Lactobacillus from several various sources were identified depending on morphological, microscopically and biochemical tests in vitro analysis of probiotic properties that included: an ability to tolerate in different concentration of bile salt, survival in acidic conditions, their antimicrobial activity, and S-layer characterizations were carried out. It was noticed that isolates of Lactobacillus rhamnosus and L. delbrueckii have a broad activity of antimicrobial and found the isolate L. rhamnosus represented with a survival percentage 6.9% at pH 4.5 and 5.1% at pH 2.0) also L. rhamnosus (5.7% at pH 4.5 and 4.9% at pH 2.0) tolerated acidic media, Lactobacillus spp. has antimicrobial activity against all gram-positive and negative tested isolates. 70 kDa of S-layer protein bands were detected with whole-cell SDS-PAGE analysis, and it's predominant in cells of isolates which grown in MRS broth anaerobically. It was noticed that the collected Lactobacillus isolates could be used as probiotic.


2009 ◽  
Vol 75 (14) ◽  
pp. 4887-4891 ◽  
Author(s):  
Pilar Fernández de Palencia ◽  
María Laura Werning ◽  
Elena Sierra-Filardi ◽  
María Teresa Dueñas ◽  
Ana Irastorza ◽  
...  

ABSTRACT Exopolysaccharides have prebiotic potential and contribute to the rheology and texture of fermented foods. Here we have analyzed the in vitro bioavailability and immunomodulatory properties of the 2-substituted (1,3)-β-d-glucan-producing bacterium Pediococcus parvulus 2.6. It resists gastrointestinal stress, adheres to Caco-2 cells, and induces the production of inflammation-related cytokines by polarized macrophages.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nathan das Neves Selis ◽  
Hellen Braga Martins de Oliveira ◽  
Hiago Ferreira Leão ◽  
Yan Bento dos Anjos ◽  
Beatriz Almeida Sampaio ◽  
...  

Abstract Background Probiotics are important tools in therapies against vaginal infections and can assist traditional antibiotic therapies in restoring healthy microbiota. Recent research has shown that microorganisms belonging to the genus Lactobacillus have probiotic potential. Thus, this study evaluated the potential in vitro probiotic properties of three strains of Lactiplantibacillus plantarum, isolated during the fermentation of high-quality cocoa, against Gardnerella vaginalis and Neisseria gonorrhoeae. Strains were evaluated for their physiological, safety, and antimicrobial characteristics. Results The hydrophobicity of L. plantarum strains varied from 26.67 to 91.67%, and their autoaggregation varied from 18.10 to 30.64%. The co-aggregation of L. plantarum strains with G. vaginalis ranged from 14.73 to 16.31%, and from 29.14 to 45.76% with N. gonorrhoeae. All L. plantarum strains could moderately or strongly produce biofilms. L. plantarum strains did not show haemolytic activity and were generally sensitive to the tested antimicrobials. All lactobacillus strains were tolerant to heat and pH resistance tests. All three strains of L. plantarum showed antimicrobial activity against the tested pathogens. The coincubation of L. plantarum strains with pathogens showed that the culture pH remained below 4.5 after 24 h. All cell-free culture supernatants (CFCS) demonstrated activity against the two pathogens tested, and all L. plantarum strains produced hydrogen peroxide. CFCS characterisation in conjunction with gas chromatography revealed that organic acids, especially lactic acid, were responsible for the antimicrobial activity against the pathogens evaluated. Conclusion The three strains of L. plantarum presented significant probiotic characteristics against the two pathogens of clinical importance. In vitro screening identified strong probiotic candidates for in vivo studies for the treatment of vaginal infections.


2016 ◽  
Vol 54 (5) ◽  
pp. 632
Author(s):  
Nguyen Thi My Le ◽  
Nguyen Thi Huong

Lactobacillus strains are a major part of the probiotics, microflora of the intestine and of fermented foods. The aim of this study was to evaluate the potential probiotics of six Lactobacillus strains (L. fermentum 39-183; L. plantarum subsp.plantarum P-8; L. casei ATCC 334; L. rhamnosus ATCC 8530, L. brevis KB 290 and L. fermentum JMC 7776). Probiotic properties such as acid tolerance, bile resistance, bacteriocin-like activity, cell surface hydrophobicity and antibiotic resistance were assessed. In vitro results obtained showed that all Lactobacillus strains tested were able to meet the basic requirements for probiotic functions as they demonstrated probiotic characteristics such as tolerance to pH 2.0 and 2% bile salt. All Lactobacillus strains inhibited the growth of E. coli, Staphylococcus aureus and Salmonella Typhi. Among strains tested, L. plantarum subsp.plantarum P-8 showing inhibitory is very promising with inhibition zone ranging between 6.5 to 12.7 mm. The results for cell surface hydrophobicity and susceptibility against antibiotics also showed that L. fermentum JMC 7776 and L. plantarum subsp.plantarum P-8 had higher cell surface hydrophobicity than the rests.  All Lactobacillus tested were resistant to vancomycin and susceptible to streptomycin. The results obtained in this investigation will be used to select potentially probiotic strains for in vivo study


2005 ◽  
Vol 13 (2) ◽  
pp. 69-75 ◽  
Author(s):  
Magdalena Strus ◽  
Agnieszka Kucharska ◽  
Grażyna Kukla ◽  
Monika Brzychczy-Włoch ◽  
Katarzyna Maresz ◽  
...  

Lactobacilli, the predominant vaginal microorganisms in healthy premenopausal women, control other members of the vaginal microflora and thus protect against bacterial vaginosis and urinary tract infections. It has been claimed that some lactobacilli are also protective againstCandidavaginitis. Little is known, however, about the mechanisms by which these lactobacilli can control vaginal populations ofCandidaand prevent vaginitis. To address this question, vaginalLactobacillusstrains with known antagonistic properties against bacteria were tested for their cell surface properties, adhesion to vaginal cell linesin vitroand antagonistic activities againstCandida. A small proportion of the lactobacilli tested adhered strongly to cultured vaginal epithelial cells and inhibited growth ofCandida albicansbut not ofC. pseudotropicalis. This anticandidal activity was in someLactobacillusstrains related to hydrogen peroxide (H2O2) production, but catalase treatment did not suppress this activity in otherLactobacillusstrains, suggesting alternative mechanism(s). Moreover, tested vaginalCandidastrains were resistant to relatively high concentrations ofH2O2that markedly exceeded those produced by even the most activeLactobacillusstrains.


2021 ◽  
Author(s):  
M. Asan-Ozusaglam ◽  
A. Gunyakti

AbstractThe probiotic and technological potentials of lactic acid bacteria originating from human milk are becoming a remarkable research area. In the present study, Limosilactobacillus vaginalis MA-10 isolated from human milk was investigated in vitro for its probiotic and technological aspects. According to the results obtained in the study, MA-10 strain exhibited non-haemolytic activity and various degrees of sensitivity to most of the tested antibiotics. The strain showed good resistance to the gastrointestinal system and maintained its viability under these conditions. Its antimicrobial activity against human or clinical bacterial and fungal microorganisms and fish bacteria was determined in the range of 2.38–11.22 mm. The MA-10 strain was able to assimilate cholesterol ranging from 31.42 to 82.30%. The strain showed 9.34% ferrous-ion chelating and 32% DPPH free radical scavenging activities. These initial results from the present study confirm that L. vaginalis MA-10 may be a new source with appropriated probiotic and technological traits for various industries, and further in vivo assays.Due to the limited number of studies on L. vaginalis strains originated from human breast milk in the literature, the data obtained in this study are thought to be important for revealing the basic probiotic properties of the strain.


2012 ◽  
Vol 78 (12) ◽  
pp. 4209-4216 ◽  
Author(s):  
Valentina Taverniti ◽  
Mario Minuzzo ◽  
Stefania Arioli ◽  
Ilkka Junttila ◽  
Sanna Hämäläinen ◽  
...  

ABSTRACTThe use of proper bacterial strains as probiotics for the pharyngeal mucosa is a potential prophylactic strategy for upper respiratory tract infections. In this context, we characterizedin vitrothe functional and immunomodulatory properties of the strainsLactobacillus helveticusMIMLh5 andStreptococcus salivariusST3 that were selected during previous investigations as promising pharyngeal probiotics. In this study, we demonstratedin vitrothat strains MIMLh5 and ST3, alone and in combination, can efficiently adhere to pharyngeal epithelial cells, antagonizeStreptococcus pyogenes, and modulate host innate immunity by inducing potentially protective effects. In particular, we found that the strains MIMLh5 and ST3 activate U937 human macrophages by significantly inducing the expression of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). Nonetheless, the induction of the anti-inflammatory interleukin-10 (IL-10) by MIMLh5 or ST3 was never lower than that of TNF-α, suggesting that these bacteria can potentially exert a regulatory rather than a proinflammatory effect. We also found that the strains MIMLh5 and ST3 induce cyclooxygenase 2 (COX-2) expression and demonstrated that toll-like receptor 2 (TLR-2) participates in the recognition of the strains MIMLh5 and ST3 by U937 cells. Finally, we observed that these microorganisms grow efficiently when cocultured in milk, suggesting that the preparation of a milk-based fermented product containing both MIMLh5 and ST3 can be a practical solution for the administration of these bacteria. In conclusion, we propose the combined use ofL. helveticusMIMLh5 andS. salivariusST3 for the preparation of novel products that display probiotic properties for the pharyngeal mucosa.


Sign in / Sign up

Export Citation Format

Share Document