scholarly journals In VitroFunctional and Immunomodulatory Properties of the Lactobacillus helveticus MIMLh5-Streptococcus salivarius ST3 Association That Are Relevant to the Development of a Pharyngeal Probiotic Product

2012 ◽  
Vol 78 (12) ◽  
pp. 4209-4216 ◽  
Author(s):  
Valentina Taverniti ◽  
Mario Minuzzo ◽  
Stefania Arioli ◽  
Ilkka Junttila ◽  
Sanna Hämäläinen ◽  
...  

ABSTRACTThe use of proper bacterial strains as probiotics for the pharyngeal mucosa is a potential prophylactic strategy for upper respiratory tract infections. In this context, we characterizedin vitrothe functional and immunomodulatory properties of the strainsLactobacillus helveticusMIMLh5 andStreptococcus salivariusST3 that were selected during previous investigations as promising pharyngeal probiotics. In this study, we demonstratedin vitrothat strains MIMLh5 and ST3, alone and in combination, can efficiently adhere to pharyngeal epithelial cells, antagonizeStreptococcus pyogenes, and modulate host innate immunity by inducing potentially protective effects. In particular, we found that the strains MIMLh5 and ST3 activate U937 human macrophages by significantly inducing the expression of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). Nonetheless, the induction of the anti-inflammatory interleukin-10 (IL-10) by MIMLh5 or ST3 was never lower than that of TNF-α, suggesting that these bacteria can potentially exert a regulatory rather than a proinflammatory effect. We also found that the strains MIMLh5 and ST3 induce cyclooxygenase 2 (COX-2) expression and demonstrated that toll-like receptor 2 (TLR-2) participates in the recognition of the strains MIMLh5 and ST3 by U937 cells. Finally, we observed that these microorganisms grow efficiently when cocultured in milk, suggesting that the preparation of a milk-based fermented product containing both MIMLh5 and ST3 can be a practical solution for the administration of these bacteria. In conclusion, we propose the combined use ofL. helveticusMIMLh5 andS. salivariusST3 for the preparation of novel products that display probiotic properties for the pharyngeal mucosa.

2010 ◽  
Vol 78 (11) ◽  
pp. 4734-4743 ◽  
Author(s):  
Simone Guglielmetti ◽  
Valentina Taverniti ◽  
Mario Minuzzo ◽  
Stefania Arioli ◽  
Ivan Zanoni ◽  
...  

ABSTRACT The probiotic approach represents an alternative strategy in the prevention and treatment of infectious diseases, not only at the intestinal level but also at other sites of the body where the microbiota plays a role in the maintenance of physiological homeostasis. In this context, we evaluated in vitro the potential abilities of probiotic and dairy bacteria in controlling Streptococcus pyogenes infections at the pharyngeal level. Initially, we analyzed bacterial adhesion to FaDu hypopharyngeal carcinoma cells and the ability to antagonize S. pyogenes on FaDu cell layers and HaCat keratinocytes. Due to its promising adhesive and antagonistic features, we studied the dairy strain Lactobacillus helveticus MIMLh5, also through in vitro immunological experiments. First, we performed quantification of several cytokines and measurement of NF-κB activation in FaDu cells. MIMLh5 efficiently reduced the induction of interleukin-6 (IL-6), IL-8, and tumor necrosis factor alpha (TNF-α), in a dose-dependent manner. After stimulation of cells with IL-1β, active NF-κB was still markedly lowered. Nevertheless, we observed an increased secretion of IL-6, gamma interferon (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF) under these conditions. These effects were associated with the ability of MIMLh5 to enhance the expression of the heat shock protein coding gene hsp70. In addition, MIMLh5 increased the GM-CSF/G-CSF ratio. This is compatible with a switch of the immune response toward a TH1 pathway, as supported by our observation that MIMLh5, once in contact with bone marrow-derived dendritic cells, triggered the secretion of TNF-α and IL-2. In conclusion, we propose MIMLh5 as a potential probiotic bacterium for the human pharynx, with promising antagonistic and immunomodulatory properties.


2016 ◽  
Vol 60 (9) ◽  
pp. 5492-5503 ◽  
Author(s):  
Liang Shen ◽  
Yang Yang ◽  
Fei Ye ◽  
Gaoshan Liu ◽  
Marc Desforges ◽  
...  

ABSTRACTHuman coronaviruses (HCoVs) cause 15 to 30% of mild upper respiratory tract infections. However, no specific antiviral drugs are available to prevent or treat HCoV infections to date. Here, we developed four infectious recombinant HCoVs-OC43 (rHCoVs-OC43) which express theRenillaluciferase (Rluc) reporter gene. Among these four rHCoVs-OC43, rOC43-ns2DelRluc (generated by replacing ns2 with the Rluc gene) showed robust luciferase activity with only a slight impact on its growth characteristics. Additionally, this recombinant virus remained stable for at least 10 passages in BHK-21 cells. rOC43-ns2DelRluc was comparable to its parental wild-type virus (HCoV-OC43-WT) with respect to the quantity of the antiviral activity of chloroquine and ribavirin. We showed that chloroquine strongly inhibited HCoV-OC43 replicationin vitro, with a 50% inhibitory concentration (IC50) of 0.33 μM. However, ribavirin showed inhibition of HCoV-OC43 replication only at high concentrations which may not be applicable to humans in clinical treatment, with an IC50of 10 μM. Furthermore, using a luciferase-based small interfering RNA (siRNA) screening assay, we identified double-stranded-RNA-activated protein kinase (PKR) and DEAD box RNA helicases (DDX3X) that exhibited antiviral activities, which were further verified by the use of HCoV-OC43-WT. Therefore, rOC43-ns2DelRluc represents a promising safe and sensitive platform for high-throughput antiviral screening and quantitative analysis of viral replication.


2010 ◽  
Vol 76 (12) ◽  
pp. 3948-3958 ◽  
Author(s):  
Simone Guglielmetti ◽  
Valentina Taverniti ◽  
Mario Minuzzo ◽  
Stefania Arioli ◽  
Milda Stuknyte ◽  
...  

ABSTRACT The research described here was aimed at the selection of oral bacteria that displayed properties compatible with their potential use as probiotics for the pharyngeal mucosa. We included in the study 56 bacteria newly isolated from the pharynges of healthy donors, which were identified at the intraspecies level and characterized in vitro for their probiotic potential. The experiments led us to select two potential probiotic bacterial strains (Streptococcus salivarius RS1 and ST3) and to compare them with the prototype oral probiotic S. salivarius strain K12. All three strains efficiently bound to FaDu human epithelial pharyngeal cells and thereby antagonized Streptococcus pyogenes adhesion and growth. All were sensitive to a variety of antibiotics routinely used for the control of upper respiratory tract infections. Immunological in vitro testing on a FaDu layer revealed different responses to RS1, ST3, and K12. RS1 and ST3 modulated NF-κB activation and biased proinflammatory cytokines at baseline and after interleukin-1β (IL-1β) induction. In conclusion, we suggest that the selected commensal streptococci represent potential pharyngeal probiotic candidates. They could display a good degree of adaptation to the host and possess potential immunomodulatory and anti-inflammatory properties.


2005 ◽  
Vol 3 (3) ◽  
pp. 109-112
Author(s):  
R. Sessa ◽  
M. Di Pietro ◽  
G. Schiavoni ◽  
I. Santino ◽  
M. Del Piano

Chlamydia pneumoniae, a Gram-negative intracellular obligate bacteria, is recognised as a common cause of upper respiratory tract infections, and accounts for ∼10% of community-acquired pneumonia. In recent years, chronic and persistent infection with C. pneumoniae has been implicated in the pathogenesis of atherosclerosis. Atherosclerosis is regarded as a chronic inflammatory disease that results from complex interactions between a variety of cell types such as endothelial cells, vascular smooth muscle cells, monocytes/macrophages and inflammatory mediators. Involvement of C. pneumoniae in the pathogenesis of atherosclerosis has been supported by findings from seroepidemiologic studies, direct detection of chlamydial DNA, experimental animal and in vitro studies, and antibiotic intervention trials. The spectrum of cell biological, animal, and human clinical data suggests that C. pneumoniae may be considered an infectious risk factor for atherosclerosis but further studies are needed to clarify the etiopathogenetic role of C. pneumoniae in atherosclerotic vessel walls.


2018 ◽  
Vol 86 (12) ◽  
Author(s):  
Alison Coady ◽  
Anissa R. Ramos ◽  
Joshua Olson ◽  
Victor Nizet ◽  
Kathryn A. Patras

ABSTRACTUrinary tract infections (UTIs) caused by the human fungal pathogenCandida albicansand related species are prevalent in hospitalized patients, especially those on antibiotic therapy, with indwelling catheters, or with predisposing conditions such as diabetes or immunodeficiency. Understanding of key host defenses againstCandidaUTI is critical for developing effective treatment strategies. Tamm-Horsfall glycoprotein (THP) is the most abundant urine protein, with multiple roles in renal physiology and bladder protection. THP protects against bacterial UTI by blocking bacterial adherence to the bladder epithelium, but its role in defense against fungal pathogens is not yet described. Here we demonstrate that THP restricts colonization of the urinary tract byC. albicans. THP binds toC. albicanshyphae, but not the yeast form, in a manner dependent on fungal expression of the Als3 adhesion glycoprotein. THP directly blocksC. albicansadherence to bladder epithelial cellsin vitro, and THP-deficient mice display increased fungal burden in aC. albicansUTI model. This work outlines a previously unknown role for THP as an essential component for host immune defense against fungal urinary tract infection.


2020 ◽  
Vol 202 (20) ◽  
Author(s):  
Eric C. DiBiasio ◽  
Hilary J. Ranson ◽  
James R. Johnson ◽  
David C. Rowley ◽  
Paul S. Cohen ◽  
...  

ABSTRACT Uropathogenic Escherichia coli (UPEC) is the leading cause of human urinary tract infections (UTIs), and many patients experience recurrent infection after successful antibiotic treatment. The source of recurrent infections may be persistent bacterial reservoirs in vivo that are in a quiescent state and thus are not susceptible to antibiotics. Here, we show that multiple UPEC strains require a quorum to proliferate in vitro with glucose as the carbon source. At low cell density, the bacteria remain viable but enter a quiescent, nonproliferative state. Of the clinical UPEC isolates tested to date, 35% (51/145) enter this quiescent state, including isolates from the recently emerged, multidrug-resistant pandemic lineage ST131 (i.e., strain JJ1886) and isolates from the classic endemic lineage ST73 (i.e., strain CFT073). Moreover, quorum-dependent UPEC quiescence is prevented and reversed by small-molecule proliferants that stimulate colony formation. These proliferation cues include d-amino acid-containing peptidoglycan (PG) tetra- and pentapeptides, as well as high local concentrations of l-lysine and l-methionine. Peptidoglycan fragments originate from the peptidoglycan layer that supports the bacterial cell wall but are released as bacteria grow. These fragments are detected by a variety of organisms, including human cells, other diverse bacteria, and, as we show here for the first time, UPEC. Together, these results show that for UPEC, (i) sensing of PG stem peptide and uptake of l-lysine modulate the quorum-regulated decision to proliferate and (ii) quiescence can be prevented by both intra- and interspecies PG peptide signaling. IMPORTANCE Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). During pathogenesis, UPEC cells adhere to and infiltrate bladder epithelial cells, where they may form intracellular bacterial communities (IBCs) or enter a nongrowing or slowly growing quiescent state. Here, we show in vitro that UPEC strains at low population density enter a reversible, quiescent state by halting division. Quiescent cells resume proliferation in response to sensing a quorum and detecting external signals, or cues, including peptidoglycan tetra- and pentapeptides.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
C. Colomer-Winter ◽  
A. L. Flores-Mireles ◽  
S. Kundra ◽  
S. J. Hultgren ◽  
J. A. Lemos

ABSTRACT In Firmicutes, the nutrient-sensing regulators (p)ppGpp, the effector molecule of the stringent response, and CodY work in tandem to maintain bacterial fitness during infection. Here, we tested (p)ppGpp and codY mutant strains of Enterococcus faecalis in a catheter-associated urinary tract infection (CAUTI) mouse model and used global transcriptional analysis to investigate the relationship of (p)ppGpp and CodY. The absence of (p)ppGpp or single inactivation of codY led to lower bacterial loads in catheterized bladders and diminished biofilm formation on fibrinogen-coated surfaces under in vitro and in vivo conditions. Single inactivation of the bifunctional (p)ppGpp synthetase/hydrolase rel did not affect virulence, supporting previous evidence that the association of (p)ppGpp with enterococcal virulence is not dependent on the activation of the stringent response. Inactivation of codY in the (p)ppGpp0 strain restored E. faecalis virulence in the CAUTI model as well as the ability to form biofilms in vitro. Transcriptome analysis revealed that inactivation of codY restores, for the most part, the dysregulated metabolism of (p)ppGpp0 cells. While a clear linkage between (p)ppGpp and CodY with expression of virulence factors could not be established, targeted transcriptional analysis indicates that a possible association between (p)ppGpp and c-di-AMP signaling pathways in response to the conditions found in the bladder may play a role in enterococcal CAUTI. Collectively, data from this study identify the (p)ppGpp-CodY network as an important contributor to enterococcal virulence in catheterized mouse bladder and support that basal (p)ppGpp pools and CodY promote virulence through maintenance of a balanced metabolism under adverse conditions. IMPORTANCE Catheter-associated urinary tract infections (CAUTIs) are one of the most frequent types of infection found in the hospital setting that can develop into serious and potentially fatal bloodstream infections. One of the infectious agents that frequently causes complicated CAUTI is the bacterium Enterococcus faecalis, a leading cause of hospital-acquired infections that are often difficult to treat due to the exceptional multidrug resistance of some isolates. Understanding the mechanisms by which E. faecalis causes CAUTI will aid in the discovery of new druggable targets to treat these infections. In this study, we report the importance of two nutrient-sensing bacterial regulators, named (p)ppGpp and CodY, for the ability of E. faecalis to infect the catheterized bladder of mice.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Der-Yuan Chen ◽  
Yi-Ming Chen ◽  
Chin-Fu Lin ◽  
Che-Min Lo ◽  
Hung-Jen Liu ◽  
...  

ABSTRACT Autophagy plays an important role in protecting the host against pathogens. Mycobacterium tuberculosis can suppress autophagy and then remain dormant and survive within the host for an extended period, which is responsible for latent tuberculosis infection (LTBI). Here, we explored the role of microRNAs (miRNAs) in LTBI. The miRNA profiles were explored using the next-generation sequencing approach, followed by quantitative reverse transcription-PCR validation. The biological function of candidate miRNA was evaluated using immunoblotting, immunofluorescence techniques, and enzyme-linked immunosorbent assay in an in vitro human TB granuloma model. An increased miR-889 expression was observed in patients with LTBI compared with that in patients without infection. The reporter assay identified tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) as the target of miR-889. Mycobacterial infection induced TWEAK upregulation in the early phase. TWEAK induced autophagy and promoted mycobacterial autophagosome maturation through activation of AMP-activated protein kinase (AMPK). Upon entry to LTBI status, elevated miR-889 levels were associated with TNF alpha (TNF-α) and granuloma formation/maintenance. MiR-889 inhibited autophagy via posttranscriptional suppression of TWEAK expression to maintain mycobacterial survival in granulomas. Adalimumab (anti-TNF-α monoclonal antibody) treatment reduced levels of both TNF-α and miR-889 and caused granuloma destruction and LTBI reactivation. The circulating miR-889 and TWEAK levels were correlated with LTBI and subsequently associated with anti-TNF-α-related LTBI reactivation in patients. We propose that miR-889 and TWEAK can act as targets that can be manipulated for antimycobacterial therapeutic purposes and act as candidate biomarkers for LTBI and LTBI reactivation, respectively. IMPORTANCE TB remains a leading cause of morbidity and mortality worldwide. Approximately one-quarter of the world’s population has latent TB infection. TWEAK is a multiple-function cytokine and may be used as a target for the treatment of rheumatic diseases, cardiovascular diseases, and renal diseases. Here, we demonstrated a novel relationship between TWEAK and activation of the autophagic machinery which promotes antimycobacterial immunity. Additionally, TB infection is highly dynamic and determined by the interaction between the host and mycobacterium. We demonstrated a mechanism of fine-tuned balance between the mycobacterium and host for granuloma formation and/or maintenance in LTBI status. Once patients entered LTBI status, the upregulation of miR-889 was associated with TNF-α levels and granuloma formation to maintain mycobacterial survival. Adalimumab (a TNF-α inhibitor) reduced both TNF-α and miR-889 levels and caused LTBI reactivation and, thus, TWEAK enhancement. MiR-889 and TWEAK may become potential diagnostic biomarkers or therapeutic targets for LTBI and LTBI reactivation, respectively.


2011 ◽  
Vol 55 (12) ◽  
pp. 5893-5899 ◽  
Author(s):  
Michael J. Satlin ◽  
Christine J. Kubin ◽  
Jill S. Blumenthal ◽  
Andrew B. Cohen ◽  
E. Yoko Furuya ◽  
...  

ABSTRACTCarbapenem-resistantKlebsiella pneumoniae(CRKP) is an increasingly common cause of health care-associated urinary tract infections. Antimicrobials within vitroactivity against CRKP are typically limited to polymyxins, tigecycline, and often, aminoglycosides. We conducted a retrospective cohort study of cases of CRKP bacteriuria at New York-Presbyterian Hospital from January 2005 through June 2010 to compare microbiologic clearance rates based on the use of polymyxin B, tigecycline, or an aminoglycoside. We constructed three active antimicrobial cohorts based on the active agent used and an untreated cohort of cases that did not receive antimicrobial therapy with Gram-negative activity. Microbiologic clearance was defined as having a follow-up urine culture that did not yield CRKP. Cases without an appropriate follow-up culture or that received multiple active agents or less than 3 days of the active agent were excluded. Eighty-seven cases were included in the active antimicrobial cohorts, and 69 were included in the untreated cohort. The microbiologic clearance rate was 88% in the aminoglycoside cohort (n= 41), compared to 64% in the polymyxin B (P= 0.02;n= 25), 43% in the tigecycline (P< 0.001;n= 21), and 36% in the untreated (P< 0.001;n= 69) cohorts. Using multivariate analysis, the odds of clearance were lower for the polymyxin B (odds ratio [OR], 0.10;P= 0.003), tigecycline (OR, 0.08;P= 0.001), and untreated (OR, 0.14;P= 0.003) cohorts than for the aminoglycoside cohort. Treatment with an aminoglycoside, when activein vitro, was associated with a significantly higher rate of microbiologic clearance of CRKP bacteriuria than treatment with either polymyxin B or tigecycline.


2014 ◽  
Vol 82 (9) ◽  
pp. 3644-3656 ◽  
Author(s):  
Michael D. Engstrom ◽  
Christopher J. Alteri ◽  
Harry L. T. Mobley

ABSTRACTA heterogeneous subset of extraintestinal pathogenicEscherichia coli(ExPEC) strains, referred to as uropathogenicE. coli(UPEC), causes most uncomplicated urinary tract infections. However, no core set of virulence factors exists among UPEC strains. Instead, the focus of the analysis of urovirulence has shifted to studying broad classes of virulence factors and the interactions between them. For example, the RTX nonfimbrial adhesin TosA mediates adherence to host cells derived from the upper urinary tract. The associatedtosoperon is well expressedin vivobut poorly expressedin vitroand encodes TosCBD, a predicted type 1 secretion system. TosR and TosEF are PapB and LuxR family transcription factors, respectively; however, no role has been assigned to these potential regulators. Thus, the focus of this study was to determine how TosR and TosEF regulatetosAand affect the reciprocal expression of adhesins and flagella. Among a collection of sequenced UPEC strains, 32% (101/317) were found to encode TosA, and nearly all strains (91% [92/101]) simultaneously carried the putative regulatory genes. Deletion oftosRalleviatestosArepression. Thetospromoter was localized upstream oftosRusing transcriptional fusions of putative promoter regions withlacZ. TosR binds to this region, affecting a gel shift. A 100-bp fragment 220 to 319 bp upstream oftosRinhibits binding, suggesting localization of the TosR binding site. TosEF, on the other hand, downmodulate motility when overexpressed by preventing the expression offliC, encoding flagellin. Deletion oftosEFincreased motility. Thus, we present an additional example of the reciprocal control of adherence and motility.


Sign in / Sign up

Export Citation Format

Share Document