scholarly journals Identification of Potential Core Genes in Parkinson’s Disease Using Bioinformatics Analysis

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wei Quan ◽  
Jia Li ◽  
Xiya Jin ◽  
Li Liu ◽  
Qinghui Zhang ◽  
...  

Purpose. This study aimed to explore new core genes related to the occurrence of Parkinson’s disease (PD) and core genes that can lead to the progression of PD. Methods. The expression profile data of GSE42966, which contained six substantia nigra tissues isolated from normal individuals and nine substantia nigra tissues isolated from patients with PD, were obtained from Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified, followed by functional enrichment analysis and protein-protein interaction (PPI) network construction. We then identified 10 hub genes and analyzed their expression in different Braak stages. Results. A total of 773 DEGs were identified that were significantly enriched in metabolic pathways. Ten hub genes were identified through the PPI network, namely, GNG3, MAPK1, FPR1, ATP5B, GNG2, PRKACA, HRAS, HSPA8, PSAP, and GABBR2. The expression of HRAS was different in patients with PD with Braak stages 3 and 4. Conclusion. These 10 hub genes and the metabolic pathways they are enriched in may be involved in the pathogenesis of PD. HRAS may have potential value in predicting the progression of PD.

2020 ◽  
Author(s):  
Xinyang Shen ◽  
Zhijian Wang ◽  
Zhirui Zeng ◽  
Zhenqin Huang ◽  
Xiaowei Huang ◽  
...  

Abstract Background: Preeclampsia is a form of hypertension in pregnancy, which induced by complicated factors. However, the pathogenesis of the disease is unclear. The present study was aimed to discover the critical biomarkers associated with the occurrence and development of preeclampsia. Methods:Gene data profile GSE75010 was downloaded from the Gene Expression Omnibus (GEO) database and used as discovery cohort to establish a WGCNA network determining significant modules which associated with clinical traits. Subsequently, functional enrichment analysis, pathway analysis and protein-protein interaction (PPI) network construction were performed on the core genes in significant modules to identify hub genes. Then, gene data profile GSE25906 was used as verified cohort to determine their diagnostic value of hub genes. The protein expression levels of these hub genes in preeclampsia and control placental tissues were verified using immunohistochemistry method. Finally, GSEA was performed to analyze their enrichment pathways. Results: Total 33 co-expression modules were identified after the establishment of WGCNA, of which 4 gene modules were identified as significant modules because they were related to multiple (>3) clinical traits. Total 75 core genes in significant modules were analyzed, and results showed that they were mainly enriched in adaptive immune response (Gene Ontology term) and platelet activation (Kyoto Encyclopedia of Genes and Genomes term). Finally, a total of 5 genes including TYROBP, PLEK, LCP2, HCK, ITGAM were identified as hub genes which scored high in PPI network and had high diagnostic value. Furthermore, the protein level of these 5 genes in placental tissues of preeclampsia was lower than that of the control group. Moreover, these 5 genes were all enriched in 17 pathways, including autoimmunity pathway. Conclusions:These 5 genes (TYROBP, PLEK, LCP2, HCK, ITGAM) may be closely related to the pathogenesis of preeclampsia, which may also help the diagnosis and therapy of preeclampsia.


2021 ◽  
Author(s):  
Xi Yin ◽  
Miao Wang ◽  
Wei Wang ◽  
Tong Chen ◽  
Ge Song ◽  
...  

Abstract Parkinson’s disease (PD) is a common neurodegenerative disease and the mechanism underlying PD pathogenesis is incompletely understood. Increasing evidence indicates that microRNA (miRNA) plays critical regulatory role in the pathogenesis of PD. This study aimed to determine the miRNA-mRNA regulatory network for PD. The differentially expressed miRNAs (DEmis) and genes (DEGs) between PD patients and healthy donors were screened from miRNA dataset GSE16658 and mRNA dataset GSE100054 downloaded from the Gene Expression Omnibus (GEO) database. Target genes of the DEmis were selected when predicted by 3 or 4 online databases and overlapped with DEGs from GSE100054. Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted by Database for Annotation, Visualization and Integrated Discovery (DAVID) and Metascape analytic tool. The correlation between the screened genes and PD was evaluated by the online tool Comparative Toxicogenomics Database (CTD). The protein-protein interactions (PPI) network was built by STRING platform. Finally, we testify the expression of members of the miRNA-mRNA regulatory network in the blood samples collected from PD patients and healthy donors by using qRT-PCR. 1505 upregulated and 1302 downregulated DEGs, 77 upregulated DEmis and 112 downregulated DEmis were preliminarily screened from GEO database. Through further functional enrichment analysis, 10 PD-related hub genes were selected, including RAC1, IRS2, LEPR, PPARGC1A, CAMKK2, RAB10, RAB13, RAB27B, RAB11A and JAK2, which were mainly involved in Rab protein signaling transduction, AMPK signaling pathway and signaling by Leptin. The miRNA-mRNA regulatory network was constructed with 10 hub genes and their interacting miRNAs overlapped with DEmis, including miR-30e-5p, miR-142-3p, miR-101-3p, miR-32-3p, miR-508-5p, miR-642a-5p, miR-19a-3p and miR-21-5p. Analysis on clinical samples verified significant upregulation of LEPR and downregulation of miR-101-3p in PD patients compared with healthy donors. In the study, the potential miRNA-mRNA regulatory network was constructed in PD, which may provide novel insight into pathogenesis and treatment of PD.


2020 ◽  
Vol 48 (10) ◽  
pp. 030006052095719
Author(s):  
Jun Shen ◽  
Xiao-Chang Chen ◽  
Wang-Jun Li ◽  
Qiu Han ◽  
Chun Chen ◽  
...  

Objective To identify Parkinson’s disease (PD)-associated deregulated pathways and genes, to further elucidate the pathogenesis of PD. Methods Dataset GSE100054 was downloaded from the Gene Expression Omnibus, and differentially expressed genes (DEGs) in PD samples were identified. Functional enrichment analyses were conducted for the DEGs. The top 10 hub genes in the protein–protein interaction (PPI) network were screened out and used to construct a support vector machine (SVM) model. The expression of the top 10 genes was then validated in another dataset, GSE46129, and a clinical patient cohort. Results A total of 333 DEGs were identified. The DEGs were clustered into two gene sets that were significantly enriched in 12 pathways, of which 8 were significantly deregulated in PD, including cytokine–cytokine receptor interaction, gap junction, and actin cytoskeleton regulation. The signature of the top 10 hub genes in the PPI network was used to construct the SVM model, which had high performance for predicting PD. Of the 10 genes, GP1BA, GP6, ITGB5, and P2RY12 were independent risk factors of PD. Conclusion Genes such as GP1BA, GP6, P2RY12, and ITGB5 play critical roles in PD pathology through pathways including cytokine−cytokine receptor interaction, gap junctions, and actin cytoskeleton regulation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pusheng Quan ◽  
Kai Wang ◽  
Shi Yan ◽  
Shirong Wen ◽  
Chengqun Wei ◽  
...  

AbstractThis study aimed to identify potential novel drug candidates and targets for Parkinson’s disease. First, 970 genes that have been reported to be related to PD were collected from five databases, and functional enrichment analysis of these genes was conducted to investigate their potential mechanisms. Then, we collected drugs and related targets from DrugBank, narrowed the list by proximity scores and Inverted Gene Set Enrichment analysis of drug targets, and identified potential drug candidates for PD treatment. Finally, we compared the expression distribution of the candidate drug-target genes between the PD group and the control group in the public dataset with the largest sample size (GSE99039) in Gene Expression Omnibus. Ten drugs with an FDR < 0.1 and their corresponding targets were identified. Some target genes of the ten drugs significantly overlapped with PD-related genes or already known therapeutic targets for PD. Nine differentially expressed drug-target genes with p < 0.05 were screened. This work will facilitate further research into the possible efficacy of new drugs for PD and will provide valuable clues for drug design.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Cheng Tan ◽  
Xiaoyang Liu ◽  
Jiajun Chen

Purpose. This study aimed to investigate the underlying molecular mechanisms of Parkinson’s disease (PD) by bioinformatics.Methods. Using the microarray dataset GSE72267 from the Gene Expression Omnibus database, which included 40 blood samples from PD patients and 19 matched controls, differentially expressed genes (DEGs) were identified after data preprocessing, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Protein-protein interaction (PPI) network, microRNA- (miRNA-) target regulatory network, and transcription factor- (TF-) target regulatory networks were constructed.Results. Of 819 DEGs obtained, 359 were upregulated and 460 were downregulated. Two GO terms, “rRNA processing” and “cytoplasm,” and two KEGG pathways, “metabolic pathways” and “TNF signaling pathway,” played roles in PD development. Intercellular adhesion molecule 1 (ICAM1) was the hub node in the PPI network; hsa-miR-7-5p, hsa-miR-433-3p, and hsa-miR-133b participated in PD pathogenesis. Six TFs, including zinc finger and BTB domain-containing 7A, ovo-like transcriptional repressor 1, GATA-binding protein 3, transcription factor dp-1, SMAD family member 1, and quiescin sulfhydryl oxidase 1, were related to PD.Conclusions. “rRNA processing,” “cytoplasm,” “metabolic pathways,” and “TNF signaling pathway” were key pathways involved in PD.ICAM1, hsa-miR-7-5p, hsa-miR-433-3p, hsa-miR-133b, and the abovementioned six TFs might play important roles in PD development.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Qingqing Ye ◽  
Hongbo Chen ◽  
Hongzhen Ma ◽  
Xiaojun Xiang ◽  
Shouci Hu ◽  
...  

Acute kidney injury (AKI) is responsible for significant mortality among hospitalized patients that is especially troubling aged people. An effective self-made Chinese medicine formula, Xiaoyu Xiezhuo Drink (XXD), displayed therapeutic effects on AKI. However, the compositions and underlying mechanisms of XXD remain to be elucidated. In this study, we used the ultra-high-performance liquid chromatography method coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) to investigate the chemical components in XXD. Then, the absorbable components of XXD were identified based on the five principles and inputted into the SwissTargetPrediction and STITCH databases to identify the drug targets. AKI-related targets were collected from the GenCLiP 3, GeneCards, and DisGeNET databases. The crossover genes of XXD and AKI were identified for functional enrichment analysis. The protein-protein interaction (PPI) network of crossover genes was constructed, followed by the identification of hub genes. Subsequently, the effects and potential mechanisms of XXD on AKI predicted by the network pharmacology and bioinformatics analyses were experimentally validated in ischemia-reperfusion (I/R) injury-induced AKI aged mouse models. A total of 122 components in XXD were obtained; among them, 58 components were found that could be absorbed in the blood. There were 800 potential drug targets predicted from the 58 absorbable components in AKI which shared 36 crossover genes with AKI-related targets. The results of functional enrichment analysis indicated that crossover genes mostly associated with the response to oxidative stress and the HIF1 signaling pathway. In the PPI network analysis, 12 hub genes were identified, including ALB, IL-6, TNF, TP53, VEGFA, PTGS2, TLR4, NOS3, EGFR, PPARG, HIF1A, and HMOX1. In AKI aged mice, XXD prominently alleviated I/R injury-induced renal dysfunction, abnormal renal pathological changes, and cellular senescence, inflammation, and oxidative damage with a reduction in the expression level of the inflammatory mediator, α-SMA, collagen-1, F4/80, TP53, VEGFA, PTGS2, TLR4, NOS3, EGFR, PPARG, HIF1A, ICAM-1, TGF-β1, Smad3, and p-Smad3 and an increase of nephridial tissue p-H3, Ki67, HMOX1, MMP-9, and Smad7 levels. In summary, our findings suggest that XXD has renoprotective effects against AKI in aged mice via inhibiting the TGF-β1/Smad3 and HIF1 signaling pathways.


2020 ◽  
Vol 40 (7) ◽  
Author(s):  
Yu Zhang ◽  
Xin Yang ◽  
Xiao-Lin Zhu ◽  
Jia-Qi Hao ◽  
Hao Bai ◽  
...  

Abstract Background: Glioblastoma (GBM) has a high degree of malignancy, aggressiveness and recurrence rate. However, there are limited options available for the treatment of GBM, and they often result in poor prognosis and unsatisfactory outcomes. Materials and methods: In order to identify potential core genes in GBM that may provide new therapeutic insights, we analyzed three gene chips (GSE2223, GSE4290 and GSE50161) screened from the GEO database. Differentially expressed genes (DEG) from the tissues of GBM and normal brain were screened using GEO2R. To determine the functional annotation and pathway of DEG, Gene Ontology (GO) and KEGG pathway enrichment analysis were conducted using DAVID database. Protein interactions of DEG were visualized using PPI network on Cytoscape software. Next, 10 Hub nodes were screened from the differentially expressed network using MCC algorithm on CytoHubba software and subsequently identified as Hub genes. Finally, the relationship between Hub genes and the prognosis of GBM patients was described using GEPIA2 survival analysis web tool. Results: A total of 37 up-regulated and 187 down-regulated genes were identified through microarray analysis. Amongst the 10 Hub genes selected, SV2B appeared to be the only gene associated with poor prognosis in glioblastoma based on the survival analysis. Conclusion: Our study suggests that high expression of SV2B is associated with poor prognosis in GBM patients. Whether SV2B can be used as a new therapeutic target for GBM requires further validation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jiahuan Luo ◽  
Li Zhu ◽  
Ning Zhou ◽  
Yuanyuan Zhang ◽  
Lirong Zhang ◽  
...  

Background: Many studies on circular RNAs (circRNAs) have recently been published. However, the function of circRNAs in recurrent implantation failure (RIF) is unknown and remains to be explored. This study aims to determine the regulatory mechanisms of circRNAs in RIF.Methods: Microarray data of RIF circRNA (GSE147442), microRNA (miRNA; GSE71332), and messenger RNA (mRNA; GSE103465) were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed circRNA, miRNA, and mRNA. The circRNA–miRNA–mRNA network was constructed by Cytoscape 3.8.0 software, then the protein–protein interaction (PPI) network was constructed by STRING database, and the hub genes were identified by cytoHubba plug-in. The circRNA–miRNA–hub gene regulatory subnetwork was formed to understand the regulatory axis of hub genes in RIF. Finally, the Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the hub genes were performed by clusterProfiler package of Rstudio software, and Reactome Functional Interaction (FI) plug-in was used for reactome analysis to comprehensively analyze the mechanism of hub genes in RIF.Results: A total of eight upregulated differentially expressed circRNAs (DECs), five downregulated DECs, 56 downregulated differentially expressed miRNAs (DEmiRs), 104 upregulated DEmiRs, 429 upregulated differentially expressed genes (DEGs), and 1,067 downregulated DEGs were identified regarding RIF. The miRNA response elements of 13 DECs were then predicted. Seven overlapping miRNAs were obtained by intersecting the predicted miRNA and DEmiRs. Then, 56 overlapping mRNAs were obtained by intersecting the predicted target mRNAs of seven miRNAs with 1,496 DEGs. The circRNA–miRNA–mRNA network and PPI network were constructed through six circRNAs, seven miRNAs, and 56 mRNAs; and four hub genes (YWHAZ, JAK2, MYH9, and RAP2C) were identified. The circRNA–miRNA–hub gene regulatory subnetwork with nine regulatory axes was formed in RIF. Functional enrichment analysis and reactome analysis showed that these four hub genes were closely related to the biological functions and pathways of RIF.Conclusion: The results of this study provide further understanding of the potential pathogenesis from the perspective of circRNA-related competitive endogenous RNA network in RIF.


2021 ◽  
Vol 44 (3) ◽  
pp. E45-54
Author(s):  
Chao Tan ◽  
Fang Zuo ◽  
Mingqian Lu ◽  
Sai Chen ◽  
Zhenzhen Tian ◽  
...  

Purpose: This study aimed to identify potential diagnostic and therapeutic biomakers for the development ofbreast cancer (BC). Methods: GSE86374 dataset containing 159 samples was acquired from the Gene Expression Omnibus (GEO) database followed by differentially expressed genes (DEGs) identification and cluster analysis. Corresponding functional enrichment and protein-protein interaction (PPI) network analyses were performed to identify hub genes. Prognostic evaluation using clinical information obtained from TCGA database and hub genes was conducted to screen for crucial indicators for BC progression. The risk model was established and validated. Results: In total, 186 DEGs were identified and grouped into four clusters: 96 in cluster 1; 69 in cluster 2; 16 in  cluster 3; and 5 in cluster 4. Functional enrichment analysis showed that DEGs, including ADH1B in cluster 1,  were dramatically enriched in the tyrosine and drug metabolism pathways, while genes in cluster 2, including  SPP1 and RRM2, played crucial roles in PI3K-Akt and p53 signalling pathway. SPP1 and RRM2 served as hub  genes in the PPI network, resulting in an support vector machine classifier with good accuracy and specificity.Ad ditionally, the results of prognostic analysis suggest that age, metastasis stage, SPP1 and ADH1B were correlated with risk of BC, which was validated by using the established risk model analysis. Conclusion: SPP1, RRM2 and ADH1B appear to play vital roles in the development of BC. Age and TNM stage  were also preferentially associated with risk of developing BC. Evaluation of the risk model based on larger sample size and further experimental validation are required.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shuqiang Li ◽  
Huijie Shao ◽  
Liansheng Chang

Epilepsy is most common in patients with tuberous sclerosis complex (TSC). However, in addition to the challenging treatment, the pathogenesis of epilepsy is still controversial. To determine the transcriptome characteristics of perituberal tissue (PT) and clarify its role in the pathogenesis of epilepsy, GSE16969 was downloaded from the GEO database for further study by comprehensive bioinformatics analysis. Identification of differentially expressed genes (DEGs), functional enrichment analysis, construction of protein-protein interaction (PPI) network, and selection of Hub genes were performed using R language, Metascape, STRING, and Cytoscape, respectively. Comparing with cortical tuber (CT), 220 DEGs, including 95 upregulated and 125 downregulated genes, were identified in PT and mainly enriched in collagen-containing extracellular matrix and positive regulation of receptor-mediated endocytosis, as well as the pathways of ECM-receptor interaction and neuroactive ligand-receptor interaction. As for normal cortex (NC), 1549 DEGs, including 30 upregulated and 1519 downregulated genes, were identified and mainly enriched in presynapse, dendrite and axon, and also the pathways of dopaminergic synapse and oxytocin signaling pathway. In the PPI network, 4 hub modules were found between PT and CT, and top 5 hub modules were selected between PT and NC. C3, APLNR, ANXA2, CD44, CLU, CP, MCHR2, HTR1E, CTSG, APP, and GNG2 were identified as Hub genes, of which, C3, CD44, ANXA2, HTR1E, and APP were identified as Hub-BottleNeck genes. In conclusion, PT has the unique characteristics different from CT and NC in transcriptome and makes us further understand its importance in the TSC-associated epilepsy.


Sign in / Sign up

Export Citation Format

Share Document