Functional analysis of the genotypic differences in response to calcareous-induced iron deficiency in pea plants (Pisum sativum L.)

Author(s):  
Sameh Barhoumi ◽  
Hasna Ellouzi ◽  
Abdelmajid KROUMA

Abstract Background Lime-induced iron deficiency in Pea plants is a major nutritional disorder causing severe plant growth and yield reduction in calcareous soils of Tunisia. Other the chemical fertilization for iron chlorosis correction, the exploration of the genotypic differences in response to this constraint remains the most efficient approach due to its coast, environmental benefits, and sustainability. This approach allows as to screen tolerant genotypes and identify useful traits of tolerance. Results calcareous-induced iron deficiency reduced SPAD index, plant growth, net photosynthesis, and tissues Fe concentration against a significant stimulation of the oxidative stress indicators, H2O2 and Malondialdehyde (MDA). In the same time, we have reported significant induction of SOD activity in shoots and CAT activity in roots of the genotype Alexandra (ne clear behavior observed in the other genotypes). Fe use efficiency increased on calcareous soil and clearly discriminates the studied genotypes. Conclusion Genotypic differences were observed, and Alex was found to be the most tolerant. This genotype protect its tissues against oxidative stress by stimulating SOD activity in shoots and CAT içn roots, and expressed significant efficiency of Fe uptake and use on calcareous soil. The Fe use efficiency for photosynthesis and for SOD and CAT activities clearly discriminates the studied genotypes and can be used as a useful trait for further screening programs.

Author(s):  
Abdelmajid Krouma

Calcareous soils are known problematic lands for agricultural systems because of the low availability of nutrients, particularly iron (Fe). The so-called strategy I plant (e. g. Pea, Pisum sativum L.) which groups dicotyledons and monocots other than grasses, developed root membrane activities that contribute to the improvement of Fe availability. Among the functions considered to be a critical phase in iron absorption is rhizosphere acidification by H-ATPase and Fe(III) reduced by Fe(III) chelate reducctase (FeCR). In order to experimentally investigate the importance of root FeCR in Fe nutrition, its relationship with rhizosphere acidification and the genotypic differences in response to iron deficiency in pea (Pisum sativum L.), a glasshouse experiment was conducted hydroponically on four genotypes Merveille de Kelvedon (MK); Lincoln (Lin); Douce de Provence (DP) and Alexandra (Alex). Plants of each genotype were distributed into two plots, the first one received full nutrient solution (+ Fe), the second one received nutrient solution devoid of iron (- Fe). Plant growth, Fe distribution, SPAD index and root acidification and ferric chelate reductase activities were evaluated. Fe deficiency decreased plant growth and SPAD index along with the significant increase of H-ATPase and FeCR activities. Some genotypic differences were observed as follows; Alex showed high tolerance to Fe deprivation as compared to other genotypes. Important H-ATPase and FeCR activities, high Fe use efficiency and adequate membrane efficiency are the main reasons for this tolerance. These physiological parameters could be used as tools of tolerance for further breeding programs


2011 ◽  
Vol 142 ◽  
pp. 175-179 ◽  
Author(s):  
Shi Wei Song ◽  
Hai Da Li ◽  
Ri Yuan Chen ◽  
Guang Wen Sun ◽  
Hou Cheng Liu

A substrate culture experiment was conducted to study the effect of different biological organic fertilizer levels (control: zero fertilization, low level, medium level and high level) on plant growth and yield of Chinese kale (Brassica alboglabra Bailey). Results showed that compared with control, treatments of medium and high fertilization increased the leaf number, plant height, stem diameter, yield and plant dry matter of Chinese kale. Thus they promoted plant growth. The fertilizer utilization ratio of Chinese kale was the lowest for low fertilization treatment, and it was the highest for medium fertilization treatment, while it was decreased for high fertilization treatment. The treatment of medium level fertilization (30g/plant) promoted plant growth and increased the yield of Chinese kale; also it had the highest fertilizer use efficiency. So it was the appropriate organic fertilization amount for Chinese kale production.


2010 ◽  
Vol 37 (1) ◽  
pp. 74 ◽  
Author(s):  
Michael Frei ◽  
Yunxia Wang ◽  
Abdelbagi M. Ismail ◽  
Matthias Wissuwa

Zinc deficiency reduces rice growth and yield, and this is, in part, due to leaf damage caused by reactive oxygen species (ROS). The aim of this study was to identify biochemical mechanisms conferring tolerance to Zn deficiency-induced oxidative stress. A field experiment and three nutrient solution experiments were conducted with the intolerant genotype IR74 and recombinant inbred lines (RILs) derived from a cross between IR74 and the tolerant landrace Jalmagna. After 2 weeks of growth in low Zn soil, stress symptoms developed in leaves of IR74, but not in the tolerant RIL46. Activity of antioxidant enzymes showed clear treatment effects, but did not explain tolerance of RIL46. On the contrary, the intolerant IR74 showed higher activities of superoxide dismutase (SOD), guaiacol peroxidase (POX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) under Zn deficiency. This contrasted with a constitutively higher level of total and reduced ascorbic acid (AsA) in RIL46. Three further nutrient solution experiments focussed on enzymes and reducing substrates of the ascorbate–glutathione cycle. The first experiment included the highly sensitive RIL76 in addition to the genotypes used in the field trial, to test whether the patterns of antioxidant response observed in the field were specific to the genotypes used. This genotype had similarly low AsA level as IR74, but did not respond to Zn deficiency with an increase in enzyme activity, leading to even more pronounced leaf symptoms. In a second experiment, co-segregation of AsA concentration and Zn deficiency tolerance was confirmed in five genotypes from the IR74/Jalmagna quantitative trait loci (QTL) mapping population. A third experiment was conducted to determine whether the observed patterns of antioxidant response were specific to Zn deficiency or would also apply to oxidative stress caused by iron deficiency. Although high AsA level apparently conferred tolerance under both types of stress, the enzymatic response to iron deficiency differed from that to Zn deficiency. In particular, APX activity showed a decrease instead of an increase under low iron stress. In conclusion, we suggest that a high AsA level is a promising target for developing rice genotypes with tolerance to oxidative stress.


2008 ◽  
Vol 6 (2) ◽  
pp. 4-12 ◽  
Author(s):  
Ben Lugtenberg ◽  
Faina D Kamilova

Among the many bacteria present on and around the root, Pseudomonas bacteria are (among) the best root colonizers and therefore very suitable to apply for beneficial purposes. In this chapter, we discuss the possibilities to use such bacteria for the following purposes: fertilization of the plant, stimulation of plant growth and yield, reduction of plant stress, and reduction of plant diseases. This research was supported by numerous grants, especially from the Dutch Organization for scientific research (NWO), EET, the European Commission and INTAS.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Sonam Antil ◽  
Rakesh Kumar ◽  
D. V. Pathak ◽  
Anil Kumar ◽  
Anil Panwar ◽  
...  

Abstract Background Nematodes (Meloidogyne spp.) are a major reason behind the global crop yield reduction. The bacterial strain KMT-4 was isolated from nematode-affected tomato (Solanum lycopersicum) rhizosphere at research farms, Hisar, India, and screened for its biocontrol potential against root-knot nematode Meloidogyne javanica as well as checked for its effect on plant growth and yield. Results The bacterium KMT-4 was identified as Bacillus aryabhattai based on phenotypic characters and 16S rRNA sequence analysis. During in vitro studies, hatching and mortality of M. javanica were significantly affected due to the antagonistic behavior exhibited by the bacterium. In addition to this, KMT-4 also displayed various direct as well as indirect plant growth-promoting attributes like siderophore production, growth hormone (IAA) production, ammonia excretion, hydrogen cyanide production, and chitinase activity. A pot house experiment conducted on brinjal resulted in nearly 73% reduction in eggs, while 80% reduction in galls in the plant root compared to the untreated and chemically treated plants. The final nematode population also reduced significantly in KMT-4 treatment. It was 1141.6 J2/200cc soil in control and reduced to 108 J2/200 cc soil inoculated with KMT-4. Similar results were obtained in field experiments on brinjal and cucumber conducted in years 2018 and 2019, respectively. Also, a notable enhancement in the plant growth was observed in both pot house experiment and field trials. Conclusion The possession of nematicidal activity along with plant growth-promoting properties in B. aryabhattai KMT-4 warrants its employment as a potent biological control agent against M. javanica and a promising substitute of chemical nematicides.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 577
Author(s):  
Fang He ◽  
Björn Thiele ◽  
David Kraus ◽  
Souhaila Bouteyine ◽  
Michelle Watt ◽  
...  

Vegetable product quality is an important consideration for consumers. Long-term root cooling could improve certain food quality of horticultural crops, but often comes at the expense of reduced shoot biomass or yield. Since few studies have investigated how fast Chinese broccoli (Brassica oleracea var. alboglabra Bailey) responds to changes of root temperature, we shortened the duration of the root cooling treatment to one week before harvest to make the production system more effective. The aim of this study was to improve the food quality of Chinese broccoli without causing deleterious effects on plant growth and yield. The seedlings were cultivated hydroponically at two root temperatures (10 and 20 °C) during the last week prior to harvest in summer 2018 (Exp-1) and autumn 2019 (Exp-2). Plant growth, yield, physiological variables, soluble sugars, total chlorophyll, glucosinolates and mineral elements concentration were examined. The results showed that the yield reduction was alleviated compared to results over the long-term. Specifically, yield was not affected by root cooling in Exp-1 and reduced by 18.9% in Exp-2 compared to 20 °C. Glucose and fructose concentrations of the leaves were increased when the root temperature was 10 °C in both experiments with a more pronounced impact in Exp-2. In addition, root cooling produced a significant accumulation of individual glucosinolates, such as progoitrin, gluconapin, 4-methoxyglucobrassicin and 4-hydroxyglucobrassicin, in the stems of Exp-1 and the leaves of Exp-2. Minerals, such as N, showed reductions in the shoot, but accumulation in the root. Therefore, compared to long-term root cooling, short-term (one week) reduction of the root temperature is more economical and could help improve certain quality characteristics of Chinese broccoli with less or even no yield reduction.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 115
Author(s):  
Alaa I. B. Abou-Sreea ◽  
Marwa Kamal ◽  
Dalia M. El Sowfy ◽  
Mostafa M. Rady ◽  
Gamal F. Mohamed ◽  
...  

Phosphorus (P) is an essential macronutrient necessary for plant growth, development, and reproduction. Two field experiments were carried out in 2018/2019 and 2019/2020 on P-deficient soil to evaluate the impact of foliar fertilization with nanophosphorus (nP) on growth, yield, and physio-biochemical indices, as well as trigonelline content of fenugreek plants under deficient irrigation (dI) stress (a deficit of 20 and 40% of crop evapotranspiration; dI-20 and dI-40). The growth and yield traits, leaf integrity (relative water content and membrane stability index), photosynthetic pigment contents, leaf and seed P contents, and stem and leaf anatomical features significantly decreased under dI-20, with greater reductions recorded under dI-40. In contrast, water-use efficiency, osmoprotective compounds, including free amino acids, soluble sugars, proline, and trigonelline, along with antioxidant contents (ascorbate, glutathione, phenolics, and flavonoids) and their activity increased significantly under both dI-20 and dI-40. However, foliar feeding with nano-P considerably increased plant growth and yield traits, leaf integrity, photosynthetic pigments contents, leaf and seed P contents, and anatomical features. Besides, water-use efficiency, osmoprotectant contents, and antioxidant content and activity were further increased under both dI-20 and dI-40. The positive effects were more pronounced with the smaller nP (25 nm) than the larger nP (50 nm). The results of this study backed up the idea of using foliar nourishment with nP, which can be effective in modulating fenugreek plant growth and seed production.


2005 ◽  
Vol 56 (11) ◽  
pp. 1151 ◽  
Author(s):  
Victor O. Sadras

The multiple factors constraining the growth, reproduction, and survival of diverse organisms are often non-additive. Research of interacting factors generally involves conceptual models that are specific for target organism, type of stress, and process. As a complement to this reductionist, bottom-up view, in this review I discuss a quantitative top-down approach to interacting stresses based on co-limitation theory. Firstly, co-limitation theory is revised. Co-limitation is operationally identified when the output response of a biological system (e.g. plant or population growth) to two or more inputs is greater than its response to each factor in isolation. The hypothesis of Bloom, Chapin, and Mooney, that plant growth is maximised when it is equally limited by all resources, is reworded in terms of co-limitation and formulated in quantitative terms, i.e. for a given intensity of aggregate stress, plant growth is proportional to degree of resource co-limitation. Emphasis is placed on the problems associated with the quantification of co-limitation. It is proposed that seasonal indices of nitrogen and water stress calculated with crop simulation models can be integrated in indices accounting for the aggregated intensity of water and nitrogen stress (SWN), the degree of water and nitrogen co-limitation (CWN), and the integrated effect of stress and co-limitation (SCWN = CWN/SWN). The expectation is that plant growth and yield should be an inverse function of stress intensity and a direct function of co-limitation, thus proportional to SCWN. Secondly, the constraints imposed by water and nitrogen availability on yield and water use efficiency of wheat crops are highlighted in case studies of low-input farming systems of south-eastern Australia. Thirdly, the concept of co-limitation is applied to the analysis of (i) grain yield responses to water–nitrogen interactions, and (ii) trade-offs between nitrogen- and water-use efficiency. In agreement with theoretical expectations, measured grain yield is found to be proportional to modelled SCWN. Productivity gains associated with intensification of cropping practices are interpreted in terms of a trade-off, whereby water-use efficiency is improved at the expense of nitrogen-use efficiency, thus leading to a higher degree of resource co-limitation.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8475 ◽  
Author(s):  
Wazir Ahmed ◽  
Muhammad Imran ◽  
Muhammad Yaseen ◽  
Tanveer ul Haq ◽  
Muhammad Usman Jamshaid ◽  
...  

Background During a preliminary study, effects of 0, 20, 40, and 60 mM NaCl salinity were assessed on germination rate in relation to electrolyte leakage (EL) in sweet pepper. Results explored significant rises in ethylene evolution from seeds having more EL. It was, therefore, hypothesized that excessive ethylene biosynthesis in plants due to salinity stress might be a root cause of low crop productivity. As salicylic acid is one of the potent ethylene inhibitors, thus SA was used to combat effects of ethylene produced under salinity stress of 60 mM NaCl on different physiological and morphological characteristics of sweet pepper. Methodology The effect of 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 mM SA was evaluated on seed germination, growth and yield of sweet pepper cv. Yolo wonder at salinity stress on 60 mM NaCl. Seeds were primed with SA concentrations and incubated till 312 h in an incubator to study germination. Same SA concentrations were sprayed on foliage of plants grown in saline soil (60 mM NaCl). Results Seeds primed by 0.2 to 0.3 mM SA improved germination rate by 33% due to suppression of ethylene from 3.19 (control) to 2.23–2.70 mg plate−1. Electrolyte leakage reduced to 20.8–21.3% in seeds treated by 0.2–0.3 mM SA compared to 39.9% in untreated seeds. Results also explored that seed priming by 0.3 mM improved TSS, SOD and chlorophyll contents from 13.7 to 15.0 mg g−1 FW, 4.64 to 5.38 activity h−1 100 mg−1 and 89 to 102 ug g−1 compared to untreated seeds, respectively. Results also explore that SA up to 0.2 mM SA applied on plant foliage improved LAI (5–13%), photosynthesis (4–27%), WUE (11–57%), dry weight (5–20%), SOD activity (4–20%) and finally fruit yield (4–20%) compared to untreated plants by ameliorating effect of 60 mM NaCl. Foliar application of SA also caused significant increase in nutrient use efficiency due to significant variations in POD and SOD activities. Conclusion Salicylic acid suppressed ethylene evolution from germinating seeds up to 30% under stress of 60 mM NaCl due to elevated levels of TSS and SOD activity. Foliar application of SA upgraded SOD by lowering POD activity to improve NUE particularly K use efficiency at salinity stress of 60 mM NaCl. Application of 0.2 and 0.3 mM SA emerged as the most effective concentrations of SA for mitigating 60 mM NaCl stress on different physiological and morphological characteristics of sweet pepper.


2010 ◽  
Vol 46 (3) ◽  
pp. 267-275 ◽  
Author(s):  
V. K. ARORA ◽  
A. S. SIDHU ◽  
K. S. SANDHU ◽  
S. S. THIND

SUMMARYPuddling coarse-textured soils for rice culture in the irrigated tract of the Indo-Gangetic Plains causes high soil strength in the upper layers. This may adversely affect growth and yield of following upland crops. It is possible that no-tillage (NT) in wheat (without residues of preceding rice crop) could aggravate this problem and reduce fertilizer nitrogen (N) use efficiency. In certain production scenarios, NT has been reported to be advantageous because it allows for earlier planting of wheat by eliminating delays caused by tillage. This study examined the combined effects of two crop establishment options for wheat in relation to fertilizer N and planting time following puddled rice cultivation in an irrigated environment of Punjab, northwest India. Combinations of two establishment systems, NT-direct planting and conventional-tillage (CT) with soil disruption to 0.10 m depth in main plots, with two N rates, 120 and 150 kg ha−1 in subplots, were evaluated. Variation in planting time, 31 October (D1) and 7 and 10 November (D2), was used to evaluate effect of planting-earliness. Under D1 in NT, grain yield of wheat was comparable to that under D2 in CT. However, under no advancement of wheat planting in NT, grain yield was 0.2–0.3 t ha−1 less than that in CT. This yield reduction in NT could be overcome by adding 30 kg ha−1 more fertilizer N suggesting that tillage enhanced N use efficiency. These tillage gains are ascribed to the greater extraction of profile stored and applied water and nutrients because of denser crop rooting caused by reduction in soil strength and less weed competition. Higher N use efficiency in CT suggests that farmers could achieve fertilizer N savings with this system. Comparing the tillage systems showed that NT was more cost-effective than CT even after accounting for the cost of additional fertilizer N (saving of Rs. 1685 ha−1) to overcome associated yield penalties under no advancement in planting time.


Sign in / Sign up

Export Citation Format

Share Document