scholarly journals CircEpc1 Promotes Ricin Toxin-Induced Inflammation Via Activation of NF-κB And MAPK Signaling Pathways By Sponging miR-5114

Author(s):  
Mingxin Dong ◽  
Xiaohao Zhang ◽  
Haotian Yu ◽  
Yan Wang ◽  
Ying Chang ◽  
...  

Abstract Background: Increasing studies have concentrated on investigating circular RNAs (circRNAs) as pivotal regulators in the progression of numerous diseases and biological processes and abundant evidence shows that circRNAs are participated in the regulation of innate immune responses. Several studies showed that Ricin Toxin (RT) could induce inflammatory injury. There was no research on the particular functions and underlying mechanisms of circRNAs in RT-induced inflammation. Results: In this study, RNA sequencing performed on RT-treated and normal RAW264.7 macrophage cells was used to investigated the differentially expressed circRNAs. Based on the dataset, the expression of circEpc1 (mmu_circ_0000842) was identified higher in RT-treated cells. Moreover, gain-and-loss function assays showed that circEpc1 function as a promoter in RT-induced inflammation in vivo and in vitro. Mechanistically, circEpc1 acted as a miR-5114 sponge to relieve the suppressive effect of miR-5114 on its target NOD2 and thereby activating NF-κB and MAPK signaling pathways. Conclusions: Our results illuminated a link between RT-induced inflammation and the circEpc1 regulatory loop and provided novel insight into the functions of circRNA in innate immune, which may emerge as a potential target in immunotherapy to control the RT-induced inflammatory injury.

2021 ◽  
Vol 12 ◽  
Author(s):  
Mingxin Dong ◽  
Xiaohao Zhang ◽  
Haotian Yu ◽  
Yan Wang ◽  
Ying Chang ◽  
...  

Increasing studies have concentrated on investigating circular RNAs (circRNAs) as pivotal regulators in the progression of numerous diseases and biological processes and abundant evidence shows that circRNAs are participated in the regulation of innate immune responses. Several studies showed that Ricin Toxin (RT) could induce inflammatory injury. There was no research on the particular functions and underlying mechanisms of circRNAs in RT-induced inflammation. In this study, RNA sequencing performed on RT-treated and normal RAW264.7 macrophage cells was used to investigated the differentially expressed circRNAs. Based on the dataset, the expression of circEpc1 (mmu_circ_0,000,842) was identified higher in RT-treated cells. Moreover, gain-and-loss function assays showed that circEpc1 function as a promoter in RT-induced inflammation in vivo and in vitro. Mechanistically, circEpc1 acted as a miR-5114 sponge to relieve the suppressive effect of miR-5114 on its target NOD2 and thereby activating NF-κB and MAPK signaling pathways. Our results illuminated a link between RT-induced inflammation and the circEpc1 regulatory loop and provided novel insight into the functions of circRNA in innate immune, which may emerge as a potential target in immunotherapy to control the RT-induced inflammatory injury.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Yunjia Yu ◽  
Yang Zhang ◽  
Shuyao Wang ◽  
Wei Liu ◽  
Cui Hao ◽  
...  

Abstract Background Patchouli alcohol (PA) is a tricyclic sesquiterpene extracted from Pogostemonis Herba, which is a traditional Chinese medicine used for therapy of inflammatory diseases. Recent studies have shown that PA has various pharmacological activities, including anti-bacterial and anti-viral effects. Methods In this study, the anti-influenza virus (IAV) activities and mechanisms were investigated both in vitro and in vivo. The inhibitory effects of PA against IAV in vitro were evaluated by plaque assay and immunofluorescence assay. The neuraminidase inhibition assay, hemagglutination inhibition (HI) assay, and western blot assay were used to explore the anti-viral mechanisms. The anti-IAV activities in vivo were determined by mice pneumonia model and HE staining. Results The results showed that PA significantly inhibited different IAV strains multiplication in vitro, and may block IAV infection through inactivating virus particles directly and interfering with some early stages after virus adsorption. Cellular PI3K/Akt and ERK/MAPK signaling pathways may be involved in the anti-IAV actions of PA. Intranasal administration of PA markedly improved mice survival and attenuated pneumonia symptoms in IAV infected mice, comparable to the effects of Oseltamivir. Conclusions Therefore, Patchouli alcohol has the potential to be developed into a novel anti-IAV agent in the future.


2017 ◽  
Vol 41 (6) ◽  
pp. 2307-2318 ◽  
Author(s):  
Xiao-Jian Jia ◽  
Xi Li ◽  
Feng Wang ◽  
Han-Qing Liu ◽  
Da-Jun Zhang

Background/Aims: This study aimed to investigate the anti-inflammatory activity of Berbamine (BER), a bisbenzylisoquinoline alkaloid extracted from Berberis amurensis (Xiao Bo An), and the underlying mechanisms. Methods: Macrophages and neutrophils were treated with BER in vitro and stimulated with LPS and fMLP. The effects of BER on the expression of pro-inflammatory mediators in macrophages were evaluated with quantitative RT-PCR and ELISA. The effects of BER on the activation and superoxide release of neutrophils were determined with flow cytometry and WST-1 reduction test. The inhibitory effects of BER on the activation of signaling pathways related to inflammatory response in macrophages were evaluated by western blot analysis. In addition, a mouse peritonitis model was made by peritoneal injection of thioglycollate medium and anti-inflammatory effects of BER were investigated in vivo by quantitative analysis of pro-inflammatory factor production and leukocyte exudation. Results: BER significantly inhibited inflammatory factor expression by LPS-stimulated macrophages and suppressed activation and superoxide release of fMLP-stimulated neutrophils. In the mouse peritonitis model, BER significantly inhibited the activation of macrophages and exudation of neutrophils. According to analysis, BER significantly suppressed phosphorylation of NF-κB and MAPK (JNK and ERK1/2) signaling pathways in LPS-stimulated macrophages. Conclusions: Collectively, data from this study suggest that BER has anti-inflammatory potential, which is effected via inhibition of NF-κB and MAPK signaling pathways, and thus holds promise for treatment of inflammatory disease.


2020 ◽  
Vol 261 ◽  
pp. 113105
Author(s):  
Meilian Yang ◽  
Yudan Wang ◽  
Gopal Patel ◽  
Qingwang Xue ◽  
Guy Sedar Singor Njateng ◽  
...  

2019 ◽  
Vol 20 (5) ◽  
pp. 1103 ◽  
Author(s):  
Rui Li ◽  
Yujuan Guo ◽  
Yiming Zhang ◽  
Xue Zhang ◽  
Lingpeng Zhu ◽  
...  

Salidroside (Sal) is an active ingredient that is isolated from Rhodiola rosea, which has been reported to have anti-inflammatory activities and a renal protective effect. However, the role of Sal on renal fibrosis has not yet been elucidated. Here, the purpose of the current study is to test the protective effects of Sal against renal interstitial fibrosis (RIF), and to explore the underlying mechanisms using both in vivo and in vitro models. In this study, we establish the unilateral ureteric obstruction (UUO) or folic acid (FA)-induced mice renal interstitial fibrosis in vivo and the transforming growth factor (TGF)-β1-stimulated human proximal tubular epithelial cell (HK-2) model in vitro. The levels of kidney functional parameters and inflammatory cytokines in serum are examined. The degree of renal damage and fibrosis is determined by histological assessment. Immunohistochemistry and western blotting are used to determine the mechanisms of Sal against RIF. Our results show that treatment with Sal can ameliorate tubular injury and deposition of the extracellular matrix (ECM) components (including collagen Ш and collagen I). Furthermore, Sal administration significantly suppresses epithelial-mesenchymal transition (EMT), as evidenced by a decreased expression of α-SMA, vimentin, TGF-β1, snail, slug, and a largely restored expression of E-cadherin. Additionally, Sal also reduces the levels of serum biochemical markers (serum creatinine, Scr; blood urea nitrogen, BUN; and uric acid, UA) and decreases the release of inflammatory cytokines (IL-1β, IL-6, TNF-α). Further study revealed that the effect of Sal on renal interstitial fibrosis is associated with the lower expression of TLR4, p-IκBα, p-NF-κB and mitogen-activated protein kinases (MAPK), both in vivo and in vitro. In conclusion, Sal treatment improves kidney function, ameliorates the deposition of the ECM components and relieves the protein levels of EMT markers in mouse kidneys and HK-2 cells. Furthermore, Sal treatment significantly decreases the release of inflammatory cytokines and inhibits the TLR4/NF-κB and MAPK signaling pathways. Collectively, these results suggest that the administration of Sal could be a novel therapeutic strategy in treating renal fibrosis.


2016 ◽  
Vol 7 (2) ◽  
pp. 1002-1013 ◽  
Author(s):  
Weicheng Hu ◽  
Xinfeng Wang ◽  
Lei Wu ◽  
Ting Shen ◽  
Lilian Ji ◽  
...  

In vitro and in vivo anti-inflammatory activities of apigenin-7-O-β-d-glucuronide.


2022 ◽  
Author(s):  
Weiguo Xu ◽  
Junyu Zheng ◽  
Xiao Wang ◽  
Bin Zhou ◽  
Huanqiu Chen ◽  
...  

Abstract Background: As a new kind of non-coding RNAs (ncRNAs), tRNA derivatives play an important role in gastric carcinoma (GC). Nevertheless, the underlying mechanism tRNA derivatives were involved in was rarely illustrated. Methods: We screened out the tRNA derivative, tRF-Val-CAC-016, based on the tsRNA sequencing and demonstrated the effect tRF-Val-CAC-016 exerted on GC proliferation in vitro and in vivo. We applied Dual-luciferase reporter assay, RIP assay, and bioinformatic analysis to discover the downstream target of tRF-Val-CAC-016. Then CACNA1d was selected, and the oncogenic characteristics were verified. Subsequently, we detected the possible regulation of the canonical MAPK signaling pathway to further explore the downstream mechanism of tRF-Val-CAC-016. Results: As a result, we found that tRF-Val-CAC-016 was low-expressed in GC, and upregulation of tRF-Val-CAC-016 could significantly suppress the proliferation of GC cell lines. Meanwhile, tRF-Val-CAC-016 regulated the canonical MAPK signaling pathway by targeting CACNA1d. Conclusions: tRF-Val-CAC-016 modulates the transduction of CACNA1d-mediated MAPK signaling pathways to suppress the proliferation of gastric carcinoma. This study discussed the function and mechanism of tRF-Val-CAC-016 in GC for the first time. The pioneering work has contributed to our present understanding of tRNA derivative, which might provide an alternative mean for the targeted therapy of GC.


Sign in / Sign up

Export Citation Format

Share Document