scholarly journals Evolution of Stress and Strain in 2219 Aluminum Alloy Ring During Roll-Bending Process

Author(s):  
Hai Gong ◽  
Hua Tang ◽  
Tao Zhang ◽  
Fei Dei ◽  
Xiaolong Liu ◽  
...  

Abstract The large quenched residual stress of large-scale aluminum alloy ring component induces severe deformation in the subsequent maching process. The conventional methods for reduction of residual stress (such as stepwise cold pressing and bulging) have little effect in the residual stress reduction for large-scale ring component and will induce inhomogeneous stress distribution. In this paper, roll bending process is adopted to reduce the quenched residual stress of 2219 aluminum alloy super-large ring. The numerical model of roll bending process was established, and the evolution and distribution of stress and strain after roll bending were studied. The influence of roll winding number on the uniformity of stress and strain was analyzed. The results show that the arch-shaped quenched residual stress of the ring changes to N-shaped distribution from inside to outside after roll bending process. The value of the residual stress reduces from ±180MPa in quenched state to the value within ±50MPa in roll bended state. With the increase of roll winding number, the stress uniformity is improved, but the stress reduction amplitude is basically the same. By analyzing the elastic-plastic strain distribution characteristics and strain springback law of the ring after roll bending, the formation mechanism of N-shaped residual stress distribution after roll bending is revealed.

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 105
Author(s):  
Hai Gong ◽  
Xiaoliang Sun ◽  
Yaoqiong Liu ◽  
Yunxin Wu ◽  
Yanan Wang ◽  
...  

Relieving the residual stress in components is essential to improve their service performance. In this study, a roll-bending process was proposed to reduce the quenching residual stress in a large-size 2219 Al alloy ring. The roll-bending effect on quenching residual stress was evaluated via the finite element method (FEM) combined with experiment. The effect of radial feed quantity, friction coefficient, and roller rotational speed during the roll-bending process on quenching residual stress was analyzed. A set of optimized roll-bending parameters with radial feed quantity, friction coefficient, and roller rotational speed was obtained. The results reveal that the best reduction rates of circumferential and axial residual stress reached 61.72% and 86.24%, respectively. Furthermore, the difference of the residual stress reduction effect between the roll-bended ring and the three-roller bended beam was analyzed.


2017 ◽  
Vol 887 ◽  
pp. 89-95 ◽  
Author(s):  
Yang Li ◽  
Yun Xin Wu ◽  
Hai Gong ◽  
Feng Xiao

In order to study the quenching residual stress of typical aluminum alloy component used in aerospace, the finite element (FE) model of quenching process of 7050 aluminum alloy cross-shaped component was established based on heat transfer theory and elastic-plastic mechanics theory, the distribution regularities of quenching residual stress field of cross-shaped component was analyzed. The results indicate that the residual stress distribution of web of cross-shaped component is similar to the residual stress distribution of thick plate, the large tensile stress concentration is exist in web plate and the connection part of the stiffener with a certain influence area. The error data of the component contour deformation were processed and the component deformation contour was fitted, which makes the test result of the contour method and FE simulation result have good consistency. The results of the study provides guidance for quenching residual stress reduction of aviation aluminum alloy components and provides the basis for calculating of machining deformation of monolithic component.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881305
Author(s):  
Chunhui Ji ◽  
Shuangqiu Sun ◽  
Bin Lin ◽  
Jixiong Fei

This work describes the experimental investigation of the residual stress distribution in the square pocket milling of 2219 aluminum alloy. The results reveal that the axial depth of cut is the most important factor influencing the residual stress distribution of the machined pocket surface, and the more tensile stress states are found with the increase in axial cutting depth due to the thermal deformation. The dominant mechanical deformation at all spindle speeds tends to produce the compressive residual stress. Altered feed rate and radial depth of cut show little changes in the residual stress distributions and the average values. In addition, the pattern of residual stress distribution of the square pocket surface is dramatically changed and the more tensile stresses are produced as the milling operation further proceeds. From this investigation, it is suggested to shorten the cutting time by raising the cutting parameters such as the feed rate and the radial depth of cut to achieve the compressive stress and the good surface roughness.


2020 ◽  
Vol 1003 ◽  
pp. 11-19
Author(s):  
Ya Nan Li ◽  
Yong An Zhang ◽  
Hong Lei Liu ◽  
Xin Yu Lv ◽  
Xi Wu Li ◽  
...  

Effect of multi-section linear non-uniform heat transfer coefficient on quenching residual stress distribution in 27mm-thick Al-Zn-Mg-Cu aluminum alloy plate was simulation studied by using the finite element method, and the surface quenching residual stress distribution was measured by the X-ray diffraction method and hole-drilling method. The results show that the surface quenching residual stress represents the same distribution with non-uniform heat transfer coefficient in the transverse direction and the stress level maintains initial stress level of the heat transfer coefficient at each location. The distribution of the quenching residual stress in the center of the plate is approximately uniform and the stress level is approximately equal to average of maximum and minimum initial stress level. The measured surface quenching residual stress shows a wavy distribution in the transverse direction, which is similar to the simulated surface stress distribution without considering the stress level. The measurement results can be explained by the multi-section linear non-uniform quenching model.


Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 31 ◽  
Author(s):  
Anheng Wang ◽  
Hongqian Xue ◽  
Emin Bayraktar ◽  
Yanli Yang ◽  
Shah Saud ◽  
...  

This paper focuses on the twist defects and the control strategy in the process of four-roll bending for aluminum alloy Z-section profiles with large cross-section. A 3D finite element model (3D-FEM) of roll bending process has been developed, on the premise of the curvature radius of the profile, the particularly pronounced twist defects characteristic of 7075-O aluminum alloy Z-section profiles were studied by FE method. The simulation results showed that the effective control of the twist defects of the profile could be realized by adjusting the side roller so that the exit guide roll was higher than the entrance one (the side rolls presented an asymmetric loading mode with respect to the main rolls) and increasing the radius of upper roll. Corresponding experimental tests were carried out to verify the accuracy of the numerical analysis. The experimental results indicated that control strategies based on finite element analysis (FEA) had a significant inhibitory function on twist defects in the actual roll bending process.


2015 ◽  
Vol 50 (22) ◽  
pp. 7262-7270 ◽  
Author(s):  
Pengfei Ji ◽  
Zhongyu Yang ◽  
Jin Zhang ◽  
Lin Zheng ◽  
Vincent Ji ◽  
...  

2013 ◽  
Vol 546 ◽  
pp. 127-131
Author(s):  
Zhi Qing Guo ◽  
Qiu Juan Lv ◽  
Yan Jiao Li ◽  
Chang Jiang Liu ◽  
Fang Xie

This paper use the software ANSYS to study the aluminum alloy (LF6) welding residual stress by numerical simulation and experimental study. The result indicates that the aluminum alloy (LF6) has the same residual stress distribution with others, there is a maximum value existing at the range of 4-5mm near the welding seam.


Sign in / Sign up

Export Citation Format

Share Document