scholarly journals Green Synthesis of Yellow-fluorescent Carbon Nano-Dots for Cancer-Cell Image and Photocatalytic Inactivation by Using Microplasma

2020 ◽  
Author(s):  
Jie He ◽  
Xing Qin ◽  
Jinlin Liu ◽  
Qing Zhang ◽  
Wantao Chen ◽  
...  

Abstract In recent years, multifunctional nanoparticles with combined diagnostic and therapeutic functions show great promise in nanomedicine. In this work, we report the environmentally friendly synthesis of fluorescent carbon nano-dots such as carbon quantum dots (CQDs) by microplasma using o-phenylenediamine. The produced CQDs exhibited a wide absorption peaks at 380-500 nm and emitted bright yellow fluorescence with a peak at 550 nm. The CQDs were rapidly taken up by HeLa cancer cells. When excited under blue light, a bright yellow fluorescence signal and intense reactive oxygen species (ROS) were efficiently produced, enabling simultaneous fluorescent cancer cell imaging and photodynamic inactivation, with a 40% decrease in relative cell viability. Furthermore, the CQDs has 98% cell viability at concentrations of 400 μg·mL-1 in the dark demonstrating excellent biocompatibility. The newlyprepared CQDs are thus demonstrated to be materials that can be effectively for imaging-guided cancer therapy.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xing Qin ◽  
Jinlin Liu ◽  
Qing Zhang ◽  
Wantao Chen ◽  
Xiaoxia Zhong ◽  
...  

AbstractIn recent years, multifunctional nanoparticles with combined diagnostic and therapeutic functions show great promise in nanomedicine. In this study, we report the environmentally friendly synthesis of fluorescent carbon nano-dots such as carbon quantum dots (CQDs) by microplasma using o-phenylenediamine. The produced CQDs exhibited a wide absorption peaks at 380–500 nm and emitted bright yellow fluorescence with a peak at 550 nm. The CQDs were rapidly taken up by HeLa cancer cells. When excited under blue light, a bright yellow fluorescence signal and intense reactive oxygen species (ROS) were efficiently produced, enabling simultaneous fluorescent cancer cell imaging and photodynamic inactivation, with a 40% decrease in relative cell viability. Furthermore, about 98% cells were active after the incubation with 400 μg mL−1 CQDs in the dark, which revealed the excellent biocompatibility of CQDs. Hence, the newly prepared CQDs are thus demonstrated to be materials which might be effective and safe to use for in vivo bioimaging and imaging-guided cancer therapy.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Firdos Alam Khan ◽  
Sultan Akhtar ◽  
Dana Almohazey ◽  
Munthar Alomari ◽  
Sarah Ameen Almofty

Both nanoparticles and cloves (Syzygium aromaticum) possess anticancer properties, but they do not elicit a significant response on cancer cells when treated alone. In the present study, we have tested fluorescent magnetic submicronic polymer nanoparticles (FMSP-nanoparticles) in combination with crude clove extracts on human breast cancer cells (MCF-7) to examine whether the combination approach enhance the cancer cell death. The MCF-7 cells were treated with different concentrations (1.25 μg/mL, 12.5 μg/mL, 50 μg/mL, 75 μg/mL, and 100 μg/mL) of FMSP-nanoparticles alone and in combination with 50 μg/mL crude clove extracts. The effects of FMSP-nanoparticles alone and combined with clove extracts were observed after 24 hrs and 48 hrs intervals. The response of FMSP-nanoparticles-treated cells was evaluated by Trypan Blue, 4′,6-diamidino-2-phenylindole (DAPI), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. We have demonstrated that cancer cell viability was decreased to 55.40% when treated with FMSP-nanoparticles alone, whereas when cancer cells were treated with FMSP-nanoparticles along with crude clove extracts, the cell viability was drastically decreased to 8.50%. Both morphological and quantitative data suggest that the combination of FMSP-nanoparticles plus crude clove extracts are more effective in treating cancer cells and we suggest that the combination treatment of nanoparticles along with clove extracts hold a great promise for the cancer treatments.


Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
J Poças ◽  
M Lemos ◽  
C Cabral ◽  
C Cavaleiro ◽  
MT Cruz ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii17-ii17
Author(s):  
Shashank Hambarde ◽  
Martyn Sharpe ◽  
David Baskin ◽  
Santosh Helekar

Abstract Noninvasive cancer therapy with minimal side effects would be ideal for improving patient outcome in the clinic. We have developed a novel therapy using strong rotating magnets mounted on a helmet. They generate oscillating magnetic fields (OMF) that penetrate through the skull and cover the entire brain. We have demonstrated that OMF can effectively kill patient derived glioblastoma (GBM) cells in cell culture without having cytotoxic effects on cortical neurons and normal human astrocytes (NHA). Exposure of GBM cells to OMF reduced the cell viability by 33% in comparison to sham-treated cells (p< 0.001), while not affecting NHA cell viability. Time lapse video-microscopy for 16 h after OMF exposure showed a marked elevation of mitochondrial reactive oxygen species (ROS), and rapid apoptosis of GBM cells due to activation of caspase 3. Addition of a potent antioxidant vitamin E analog Trolox effectively blocked OMF-induced GBM cell death. Furthermore, OMF significantly potentiated the cytotoxic effect of the pro-oxidant Benzylamine. The results of our studies demonstrate that OMF-induced cell death is mediated by ROS generation. These results demonstrate a potent oncolytic effect on GBM cells that is novel and unrelated to any previously described therapy, including a very different mechanism of action and different technology compared to Optune therapy. The effect is very powerful, and unlike Optune, can be seen within hours after initiation of treatment. We believe that this technology holds great promise for new, effective and nontoxic treatment of glioblastoma.


Author(s):  
Yuru Shang ◽  
Xianbin Zhang ◽  
Lili Lu ◽  
Ke Jiang ◽  
Mathias Krohn ◽  
...  

Abstract Background Recent evidence proves that intravenous human immunoglobulin G (IgG) can impair cancer cell viability. However, no study evaluated whether IgG application benefits cancer patients receiving chemotherapeutics. Methods Influence of pharmaceutical-grade human IgG on the viability of a series of patient-derived colon cancer cell lines with and without chemotherapeutic intervention was determined. Cell death was analysed flow cytometrically. In addition, the influence of oxaliplatin and IgG on the ERK1/2-signalling pathway was evaluated by western blots. Results We evaluated the effects of pharmaceutical IgG, such as PRIVIGEN® IgG and Tonglu® IgG, in combination with chemotherapeutics. We did not observe any significant effects of IgG on tumour cell viability directly; however, human IgG significantly impaired the anti-tumoral effects of oxaliplatin. Primary cancer cell lines express IgG receptors and accumulate human IgG intracellularly. Moreover, while oxaliplatin induced the activation of ERK1/2, the pharmaceutical IgG inhibited ERK1/2 activity. Conclusions The present study demonstrates that pharmaceutical IgG, such as PRIVIGEN® IgG and Tonglu® IgG, can impair the anti-carcinoma activity of oxaliplatin. These data strongly suggest that therapeutic IgG as co-medication might have harmful side effects in cancer patients. The clinical significance of these preclinical observations absolutely advises further preclinical, as well as epidemiological and clinical research.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 208
Author(s):  
Dilara Demirci ◽  
Bengisu Dayanc ◽  
Fatma Aybuke Mazi ◽  
Serif Senturk

Cellular senescence is a state of stable cell cycle arrest that can be triggered in response to various insults and is characterized by distinct morphological hallmarks, gene expression profiles, and the senescence-associated secretory phenotype (SASP). Importantly, cellular senescence is a key component of normal physiology with tumor suppressive functions. In the last few decades, novel cancer treatment strategies exploiting pro-senescence therapies have attracted considerable interest. Recent insight, however, suggests that therapy-induced senescence (TIS) elicits cell-autonomous and non-cell-autonomous implications that potentially entail detrimental consequences, reflecting the Jekyll and Hyde nature of cancer cell senescence. In essence, the undesirable manifestations that generally culminate in inflammation, cancer stemness, senescence reversal, therapy resistance, and disease recurrence are dictated by the persistent accumulation of senescent cells and the SASP. Thus, mitigating these pro-tumorigenic effects by eliminating these cells or inhibiting their SASP production holds great promise for developing innovative therapeutic strategies. In this review, we describe the fundamental aspects and dynamics of cancer cell senescence and summarize the comprehensive research on the adverse outcomes of TIS. Furthermore, we underline the rationale and motivation of emerging senotherapeutic modalities surrounding the removal of senescent cells and the SASP to help maximize the overall efficacy of cancer therapies.


Sign in / Sign up

Export Citation Format

Share Document