Assessment of the properties of the essential oil from Ridolfia segetum Moris (Portugal) on cancer cell viability

Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
J Poças ◽  
M Lemos ◽  
C Cabral ◽  
C Cavaleiro ◽  
MT Cruz ◽  
...  
Author(s):  
Yuru Shang ◽  
Xianbin Zhang ◽  
Lili Lu ◽  
Ke Jiang ◽  
Mathias Krohn ◽  
...  

Abstract Background Recent evidence proves that intravenous human immunoglobulin G (IgG) can impair cancer cell viability. However, no study evaluated whether IgG application benefits cancer patients receiving chemotherapeutics. Methods Influence of pharmaceutical-grade human IgG on the viability of a series of patient-derived colon cancer cell lines with and without chemotherapeutic intervention was determined. Cell death was analysed flow cytometrically. In addition, the influence of oxaliplatin and IgG on the ERK1/2-signalling pathway was evaluated by western blots. Results We evaluated the effects of pharmaceutical IgG, such as PRIVIGEN® IgG and Tonglu® IgG, in combination with chemotherapeutics. We did not observe any significant effects of IgG on tumour cell viability directly; however, human IgG significantly impaired the anti-tumoral effects of oxaliplatin. Primary cancer cell lines express IgG receptors and accumulate human IgG intracellularly. Moreover, while oxaliplatin induced the activation of ERK1/2, the pharmaceutical IgG inhibited ERK1/2 activity. Conclusions The present study demonstrates that pharmaceutical IgG, such as PRIVIGEN® IgG and Tonglu® IgG, can impair the anti-carcinoma activity of oxaliplatin. These data strongly suggest that therapeutic IgG as co-medication might have harmful side effects in cancer patients. The clinical significance of these preclinical observations absolutely advises further preclinical, as well as epidemiological and clinical research.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3790
Author(s):  
Gro Elise Rødland ◽  
Sissel Hauge ◽  
Grete Hasvold ◽  
Lilli T. E. Bay ◽  
Tine T. H. Raabe ◽  
...  

Inhibitors of WEE1 and ATR kinases are considered promising for cancer treatment, either as monotherapy or in combination with chemo- or radiotherapy. Here, we addressed whether simultaneous inhibition of WEE1 and ATR might be advantageous. Effects of the WEE1 inhibitor MK1775 and ATR inhibitor VE822 were investigated in U2OS osteosarcoma cells and in four lung cancer cell lines, H460, A549, H1975, and SW900, with different sensitivities to the WEE1 inhibitor. Despite the differences in cytotoxic effects, the WEE1 inhibitor reduced the inhibitory phosphorylation of CDK, leading to increased CDK activity accompanied by ATR activation in all cell lines. However, combining ATR inhibition with WEE1 inhibition could not fully compensate for cell resistance to the WEE1 inhibitor and reduced cell viability to a variable extent. The decreased cell viability upon the combined treatment correlated with a synergistic induction of DNA damage in S-phase in U2OS cells but not in the lung cancer cells. Moreover, less synergy was found between ATR and WEE1 inhibitors upon co-treatment with radiation, suggesting that single inhibitors may be preferable together with radiotherapy. Altogether, our results support that combining WEE1 and ATR inhibitors may be beneficial for cancer treatment in some cases, but also highlight that the effects vary between cancer cell lines.


2021 ◽  
Vol 135 ◽  
pp. 111229
Author(s):  
Rokas Mickus ◽  
Gintarė Jančiukė ◽  
Vytautas Raškevičius ◽  
Valeryia Mikalayeva ◽  
Inga Matulytė ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2974 ◽  
Author(s):  
Emilly Lima ◽  
Rafaela Alves ◽  
Gigliola D´Elia ◽  
Talita Anunciação ◽  
Valdenizia Silva ◽  
...  

Croton matourensis Aubl. (synonym Croton lanjouwensis Jabl.), popularly known as “orelha de burro”, “maravuvuia”, and/or “sangrad’água”, is a medicinal plant used in Brazilian folk medicine as a depurative and in the treatment of infections, fractures, and colds. In this work, we investigated the chemical composition and in vitro cytotoxic and in vivo antitumor effects of the essential oil (EO) from the leaves of C. matourensis collected from the Amazon rainforest. The EO was obtained by hydrodistillation using a Clevenger-type apparatus and characterized qualitatively and quantitatively by gas chromatography coupled to mass spectrometry (GC–MS) and gas chromatography with flame ionization detection (GC–FID), respectively. In vitro cytotoxicity of the EO was assessed in cancer cell lines (MCF-7, HCT116, HepG2, and HL-60) and the non-cancer cell line (MRC-5) using the Alamar blue assay. Furthermore, annexin V-FITC/PI staining and the cell cycle distribution were evaluated with EO-treated HepG2 cells by flow cytometry. In vivo efficacy of the EO (40 and 80 mg/kg/day) was demonstrated in C.B-17 severe combined immunodeficient (SCID) mice with HepG2 cell xenografts. The EO included β-caryophyllene, thunbergol, cembrene, p-cymene, and β-elemene as major constituents. The EO exhibited promising cytotoxicity and was able to cause phosphatidylserine externalization and DNA fragmentation without loss of the cell membrane integrity in HepG2 cells. In vivo tumor mass inhibition rates of the EO were 34.6% to 55.9%. Altogether, these data indicate the anticancer potential effect of C. matourensis.


2018 ◽  
Vol 86 (4) ◽  
pp. 52
Author(s):  
Andressa Batista ◽  
Hilania Dodou ◽  
Matheus Rodrigues ◽  
Pedro Pereira ◽  
Gleilton Sales ◽  
...  

The essential oil obtained from the leaves of Lippia alba (Mill.) N.E. Brown (Verbenaceae) has shown great pharmacological potential as an analgesic, antispasmodic, and antimicrobial agent. The aim of this study was to evaluate the modulatory effect of Lippia alba essential oil (LaEO I) on the activity of clinically used antimicrobial agents on Salmonella enterica serovar Typhi (Salmonella typhi) and Shigella dysenteriae biofilms. The Minimum Inhibitory Concentration of LaEO I (MICLaEO I) was determined by the microdilution method, and the effect of LaEO I on the activity of clinically used antimicrobials was assessed by the Checkboard method. The values obtained from MICLaEO I and ciprofloxacin were used to evaluate the effect of time of exposure on cell viability. LaEO I main components were geranial (34.2%), neral (25.9%), and myrcene (12.5%). The MICLaEO I was 1 mg/mL for both strains. LaEO I positively modulated the action of ciprofloxacin, cefepime, and ceftriaxone. After the first hour of treatment with MICLaEO I, the cell viability of the strains showed a 5 log10 CFU/mL reduction, and the LaEO I-CIP association was able to inhibit growth during the first 6 h of the test. Regarding the anti-biofilm activity, MICLaEO I was able to reduce the biofilm mass of Salmonella typhi by 61.2% and of Shigella dysenteriae by 38.9%. MICLaEO I was not able to eradicate the preformed biofilm; however, there was a reduction in the biofilm microbial viability. LaEO I has the potential to be used as an antimicrobial agent and interferes with biofilm formation; also, it is able to reduce cell viability in preformed biofilm and synergistically modulate the activity of ciprofloxacin.


Sign in / Sign up

Export Citation Format

Share Document