scholarly journals Molecular Signature of Subtypes of Renal cell carcinomas and Immunotherapy strategy

Author(s):  
Jianing Guo ◽  
XiaoFei Lv ◽  
Bin He ◽  
Pu Wang ◽  
Shenglai Liu ◽  
...  

Abstract BackgroundRenal cell carcinoma (RCC) was not a single disease, many efforts have been devoted to identifying RCC subtypes on the basis of genomic profiling, but none has classified immunogenomic profiling based on therapeutic responses in RCC subtypes.MethodsTumors from RCC patients from The Cancer Genome Atlas (TCGA) cohort were analyzed, and genomic profiling was performed. We classified RCC on the basis of the immunogenomic profiling of 29 immune signatures.ResultsWe investigated the transcriptional changes of three RCC subtypes by RNA-seq. Gene ontology (GO) identify specific gene signatures differed significantly between KIRC, KIRP and KICH related to the distinct pathways. Site of origin within the nephron was one major determinant in the molecular and immune classification, reflecting differences between three subtypes. The Immunity High KIRC and KIRP subtype was enriched not only in immune signatures, but also including PD-L1 expression signaling, NF-kappa B signaling pathway, JAK-STAT signaling pathway and Cell cycle signaling pathway. KICH was a distinct disease that shared little genomic characteristics with KIRC and KIRP.ConclusionsThe identification of RCC subtypes based on immune signatures has potential clinical implications for RCC treatment. It is imaginable that patients with higher immunity subtype of KIRC and KIRP would be more likely to respond to anti-PD-1/ PD-L1 therapy than patients with KICH subtype. CCL21 and CCL25 might be a potential target for KICH therapy.

2020 ◽  
Vol 15 ◽  
Author(s):  
Mingxuan Yang ◽  
Liangtao Zhao ◽  
Xuchang Hu ◽  
Haijun Feng ◽  
Xuewen Kang

Background: Osteosarcoma (OS) is one of the most common primary malignant bone tumors in teenagers. Emerging studies demonstrated TWEAK and Fn14 were involved in regulating cancer cell differentiation, proliferation, apoptosis, migration and invasion. Objective: The present study identified differently expressed mRNAs and lncRNAs after anti-TWEAK treatment in OS cells using GSE41828. Methods: We identified 922 up-regulated mRNAs, 863 downregulated mRNAs, 29 up-regulated lncRNAs, and 58 down-regulated lncRNAs after anti-TWEAK treatment in OS cells. By constructing PPI networks, we identified several key proteins involved in anti-TWEAK treatment in OS cells, including MYC, IL6, CD44, ITGAM, STAT1, CCL5, FN1, PTEN, SPP1, TOP2A, and NCAM1. By constructing lncRNAs coexpression networks, we identified several key lncRNAs, including LINC00623, LINC00944, PSMB8-AS1, LOC101929787. Result: Bioinformatics analysis revealed DEGs after anti-TWEAK treatment in OS were involved in regulating type I interferon signaling pathway, immune response related pathways, telomere organization, chromatin silencing at rDNA, and DNA replication. Bioinformatics analysis revealed differently expressed lncRNAs after antiTWEAK treatment in OS were related to telomere organization, protein heterotetramerization, DNA replication, response to hypoxia, TNF signaling pathway, PI3K-Akt signaling pathway, Focal adhesion, Apoptosis, NF-kappa B signaling pathway, MAPK signaling pathway, FoxO signaling pathway. Conclusion: : This study provided useful information for understanding the mechanisms of TWEAK underlying OS progression and identifying novel therapeutic markers for OS.


2021 ◽  
Vol 7 (15) ◽  
pp. eabe8978
Author(s):  
Álvaro Herrero-Navarro ◽  
Lorenzo Puche-Aroca ◽  
Verónica Moreno-Juan ◽  
Alejandro Sempere-Ferràndez ◽  
Ana Espinosa ◽  
...  

Neural cell diversity is essential to endow distinct brain regions with specific functions. During development, progenitors within these regions are characterized by specific gene expression programs, contributing to the generation of diversity in postmitotic neurons and astrocytes. While the region-specific molecular diversity of neurons and astrocytes is increasingly understood, whether these cells share region-specific programs remains unknown. Here, we show that in the neocortex and thalamus, neurons and astrocytes express shared region-specific transcriptional and epigenetic signatures. These signatures not only distinguish cells across these two brain regions but are also detected across substructures within regions, such as distinct thalamic nuclei, where clonal analysis reveals the existence of common nucleus-specific progenitors for neurons and astrocytes. Consistent with their shared molecular signature, regional specificity is maintained following astrocyte-to-neuron reprogramming. A detailed understanding of these regional-specific signatures may thus inform strategies for future cell-based brain repair.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wiruntita Chankeaw ◽  
Sandra Lignier ◽  
Christophe Richard ◽  
Theodoros Ntallaris ◽  
Mariam Raliou ◽  
...  

Abstract Background A number of studies have examined mRNA expression profiles of bovine endometrium at estrus and around the peri-implantation period of pregnancy. However, to date, these studies have been performed on the whole endometrium which is a complex tissue. Consequently, the knowledge of cell-specific gene expression, when analysis performed with whole endometrium, is still weak and obviously limits the relevance of the results of gene expression studies. Thus, the aim of this study was to characterize specific transcriptome of the three main cell-types of the bovine endometrium at day-15 of the estrus cycle. Results In the RNA-Seq analysis, the number of expressed genes detected over 10 transcripts per million was 6622, 7814 and 8242 for LE, GE and ST respectively. ST expressed exclusively 1236 genes while only 551 transcripts were specific to the GE and 330 specific to LE. For ST, over-represented biological processes included many regulation processes and response to stimulus, cell communication and cell adhesion, extracellular matrix organization as well as developmental process. For GE, cilium organization, cilium movement, protein localization to cilium and microtubule-based process were the only four main biological processes enriched. For LE, over-represented biological processes were enzyme linked receptor protein signaling pathway, cell-substrate adhesion and circulatory system process. Conclusion The data show that each endometrial cell-type has a distinct molecular signature and provide a significantly improved overview on the biological process supported by specific cell-types. The most interesting result is that stromal cells express more genes than the two epithelial types and are associated with a greater number of pathways and ontology terms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hua Zhu ◽  
Xinyao Hu ◽  
Yingze Ye ◽  
Zhihong Jian ◽  
Yi Zhong ◽  
...  

Phosphatidylinositol binding clathrin assembly protein interacting mitotic regulator (PIMREG) localizes to the nucleus and can significantly elevate the nuclear localization of clathrin assembly lymphomedullary leukocythemia gene. Although there is some evidence to support an important action for PIMREG in the occurrence and development of certain cancers, currently no pan-cancer analysis of PIMREG is available. Therefore, we intended to estimate the prognostic predictive value of PIMREG and to explore its potential immune function in 33 cancer types. By using a series of bioinformatics approaches, we extracted and analyzed datasets from Oncomine, The Cancer Genome Atlas, Cancer Cell Lineage Encyclopedia (CCLE) and the Human Protein Atlas (HPA), to explore the underlying carcinogenesis of PIMREG, including relevance of PIMREG to prognosis, microsatellite instability (MSI), tumor mutation burden (TMB), tumor microenvironment (TME) and infiltration of immune cells in various types of cancer. Our findings indicate that PIMREG is highly expressed in at least 24 types of cancer, and is negatively correlated with prognosis in major cancer types. In addition, PIMREG expression was correlated with TMB in 24 cancers and with MSI in 10 cancers. We revealed that PIMREG is co-expressed with genes encoding major histocompatibility complex, immune activation, immune suppression, chemokine and chemokine receptors. We also found that the different roles of PIMREG in the infiltration of different immune cell types in different tumors. PIMREG can potentially influence the etiology or pathogenesis of cancer by acting on immune-related pathways, chemokine signaling pathway, regulation of autophagy, RIG-I like receptor signaling pathway, antigen processing and presentation, FC epsilon RI pathway, complement and coagulation cascades, T cell receptor pathway, NK cell mediated cytotoxicity and other immune-related pathways. Our study suggests that PIMREG can be applied as a prognostic marker in a variety of malignancies because of its role in tumorigenesis and immune infiltration.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8276 ◽  
Author(s):  
Yichong Zhang ◽  
Yuanbo Zhan ◽  
Yuhui Kou ◽  
Xiaofeng Yin ◽  
Yanhua Wang ◽  
...  

Background Neurogenic heterotopic ossification is a disorder of aberrant bone formation affecting one in five patients sustaining a spinal cord injury or traumatic brain injury (SCI-TBI-HO). However, the underlying mechanisms of SCI-TBI-HO have proven difficult to elucidate. The aim of the present study is to identify the most promising candidate genes and biological pathways for SCI-TBI-HO. Methods In this study, we used text mining to generate potential explanations for SCI-TBI-HO. Moreover, we employed several additional datasets, including gene expression profile data, drug data and tissue-specific gene expression data, to explore promising genes that associated with SCI-TBI-HO. Results We identified four SCI-TBI-HO-associated genes, including GDF15, LDLR, CCL2, and CLU. Finally, using enrichment analysis, we identified several pathways, including integrin signaling, insulin pathway, internalization of ErbB1, urokinase-type plasminogen activator and uPAR-mediated signaling, PDGFR-beta signaling pathway, EGF receptor (ErbB1) signaling pathway, and class I PI3K signaling events, which may be associated with SCI-TBI-HO. Conclusions These results enhance our understanding of the molecular mechanisms of SCI-TBI-HO and offer new leads for researchers and innovative therapeutic strategies.


2021 ◽  
Author(s):  
Mai Adachi Nakazawa ◽  
Yoshinori Tamada ◽  
Yoshihisa Tanaka ◽  
Marie Ikeguchi ◽  
Kako Higashihara ◽  
...  

The identification of cancer subtypes is important for the understanding of tumor heterogeneity. In recent years, numerous computational methods have been proposed for this problem based on the multi-omics data of patients. It is widely accepted that different cancer subtypes are induced by different molecular regulatory networks. However, only a few incorporate the differences between their molecular systems into the classification processes. In this study, we present a novel method to classify cancer subtypes based on patient-specific molecular systems. Our method quantifies patient-specific gene networks, which are estimated from their transcriptome data. By clustering their quantified networks, our method allows for cancer subtyping, taking into consideration the differences in the molecular systems of patients. Comprehensive analyses of The Cancer Genome Atlas (TCGA) datasets applied to our method confirmed that they were able to identify more clinically meaningful cancer subtypes than the existing subtypes and found that the identified subtypes comprised different molecular features. Our findings show that the proposed method, based on a simple classification using the patient-specific molecular systems, can identify cancer subtypes even with single omics data, which cannot otherwise be captured by existing methods using multi-omics data.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4835
Author(s):  
Patrycja Czerwinska ◽  
Andrzej Adam Mackiewicz

Krüppel-associated box zinc finger (KRAB-ZNF) proteins are known to regulate diverse biological processes, such as embryonic development, tissue-specific gene expression, and cancer progression. However, their involvement in the regulation of cancer stemness-like phenotype acquisition and maintenance is scarcely explored across solid tumor types, and to date, there are no data for kidney renal clear cell cancer (KIRC). We have harnessed The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database transcriptomic data and used several bioinformatic tools (i.e., GEPIA2, GSCALite, TISIDB, GSEA, CIBERSORT) to verify the relation between the expression and genomic alterations in KRAB-ZNFs and kidney cancer, focusing primarily on tumor dedifferentiation status and antitumor immune response. Our results demonstrate a significant negative correlation between KRAB-ZNFs and kidney cancer dedifferentiation status followed by an attenuated immune-suppressive response. The transcriptomic profiles of high KRAB-ZNF-expressing kidney tumors are significantly enriched with stem cell markers and show a depletion of several inflammatory pathways known for favoring cancer stemness. Moreover, we show for the first time the prognostic role for several KRAB-ZNFs in kidney cancer. Our results provide new insight into the role of selected KRAB-ZNF proteins in kidney cancer development. We believe that our findings may help better understand the molecular basis of KIRC.


2020 ◽  
Author(s):  
Shen Pan ◽  
Yunhong Zhan ◽  
Xiaonan Chen ◽  
Bin Wu ◽  
Bitian Liu

Abstract Background T1G3 shows a higher chance of recurrence and progression among early bladder cancer types and the available treatment option is controversial. High recurrence and progression are the problems that need to be explored and solved. Changes in the internal signals of bladder cancer cells and differential genes may be the root cause of these problems. Methods GSE120736, GSE19915, GSE19423, GSE32548 and GSE37815 datasets were obtained from Gene Expression Omnibus (GEO ) to identify differentially expressed genes (DEGs). Bladder cancer transcript data from The Cancer Genome Atlas (TCGA) were clustered into different cell-specific gene sets according to weighted gene co-expression network analysis (WGCNA). Multiple sets of databases were used for gene expression comparison, functional enrichment, and protein interaction analysis, including The Human Protein Atlas, Cancer Dependency Map, Metascape, Gene set enrichment analysis, and DisNor. Results DEGs were obtained through GEO data comparison and intersection. After WGCNA was proven to recognise cell-specific gene sets, candidate DEGs were selected and shown to be specifically expressed in cancer cells. Candidate DEGs were related to mitosis and cell cycle. Further, 12 functional candidate markers were identified from the sequencing data of 30 bladder cancer cell lines. These genes were all up-regulated and previously shown to be closely related to bladder cancer progression. Conclusions Twelve functional genes with specific differential expression in bladder cancer cells were identified. WGCNA can identify the relatively specific expression sets of different cells in bladder cancer with greater tumour heterogeneity, which provides new perspectives for future cancer research.


Sign in / Sign up

Export Citation Format

Share Document