scholarly journals Crocetin suppresses angiogenesis through inhibiting Sonic hedgehog signaling pathway in gastric cancer

2020 ◽  
Author(s):  
Ye Zhou ◽  
Mingde Zang ◽  
Junyi Hou ◽  
Jiangli Wang ◽  
Yakai Huang ◽  
...  

Abstract BackgroundCrocetin is an active component of saffron stigma, which has important therapeutic effects on various diseases including tumors, arthritis, hemorrhages, etc. However, the effects of crocetin on gastric cancer (GC) cells and their underlying mechanisms remain unclear.MethodsCell counting kit‑8 (CCK‑8), transwell assays, F-actin staining, tube formation and vasculogenic mimicry (VM) assays were used to examine the effects of crocetin on cell proliferation, migration and angiogenesis in GC. Enzyme linked immunosorbent assay (ELISA) and Western blot assay were performed to evaluate expression level of Sonic hedgehog (Shh) signaling and activation of epithelial‑mesenchymal transition (EMT) in GC cells treated with or without crocetin. Proliferation of xenograft tumors was detected by immunohistochemistry. ResultsCrocetin significantly inhibited tube formation of human umbilical vein endothelial (HUVEC) cells and VM formation of GC cells, as well as its proliferation, invasion and migration. Crocetin destroyed cytoskeleton and mosaic vessels formed by HUVEC and GC cells. Furthermore, we found that crocetin suppressed cell proliferation, migration, EMT, tube and VM formation through inhibiting Shh signaling pathway. Utilization of recombinant Shh reversed the suppressing effects of crocetin on cell proliferation, migration, angiogenesis and EMT. In addition, anti-tumor effect of crocetin was confirmed in xenograft tumors.ConclusionsCrocetin suppressed GC progression by inhibiting cell proliferation, migration and angiogenesis including tubes formed by HUVEC cells and VM vessels formed by GC cells, which were mediated by suppressing Shh signaling pathway. These results indicated that crocetin may function as an effective therapeutic drug against GC.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yong Zhang ◽  
Zhengxia Zha ◽  
Wenhua Shen ◽  
Dan Li ◽  
Naixin Kang ◽  
...  

Abstract Background Despite the increased morbidity of ulcerative colitis (UC) in the developing countries, available treatments remain unsatisfactory. Therefore, it is urgent to discover more effective therapeutic strategies. Pulsatilla chinensis was widely used for the treatment of inflamed intestinal diseases including UC for thousands of years in China. Anemoside B4, the most abundant triterpenoid saponin isolated from P. chinensis, exerts anti-inflammatory and antioxidant effects and may be the most active compounds, which is responsible for the therapeutic effects. However, the mechanism how anemoside B4 executes its biological functions is still elusive. Methods Here, we used the 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis rat model to evaluate the therapeutic effect of anemoside B4. Blood samples of colitis rats were collected for hematology analysis. The inflammation-associated factors were investigated by enzyme-linked immunosorbent assay (ELISA). Cell proliferation and apoptosis was determined with EdU cell proliferation assay and TUNEL assay. The proteins regulated by anemoside B4 were identified by label-free quantitative proteomics. The significantly down-regulated proteins were verified by Western blotting analysis. mRNA expression was analyzed by quantitative real-time RT-PCR. Results The results showed that anemoside B4 ameliorated TNBS-induced colitis symptoms, including tissue damage, inflammatory cell infiltration, and pro-inflammatory cytokine production, apoptosis and slowed proliferation in colon. Quantitative proteomic analyses discovered that 56 proteins were significantly altered by anemoside B4 in the TNBS-induced rats. These proteins mainly clustered in tricarboxylic acid (TCA) cycle and respiratory electron transport chain. Among the altered proteins, S100A9 is one of the most significantly down-regulated proteins and associated with NF-κB and MAPK signaling pathways in the pathogenesis of UC. Further experiments revealed that anemoside B4 suppressed the expression of S100A9 and its downstream genes including TLR4 and NF-κB in colon. In vitro, anemoside B4 could inhibit the NF-κB signaling pathway induced by recombinant S100A9 protein in human intestinal epithelial Caco-2 cells. Moreover, anemoside B4 inhibits neutrophils recruitment and activation in colon induced by TNBS. Conclusions Our results demonstrate that anemoside B4 prevents TNBS-induced colitis by inhibiting the NF-κB signaling pathway through deactivating S100A9, suggesting that anemoside B4 is a promising therapeutic candidate for colitis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sadegh Fattahi ◽  
Novin Nikbakhsh ◽  
Mohammad Ranaei ◽  
Davood Sabour ◽  
Haleh Akhavan-Niaki

AbstractGastric cancer is the leading cause of cancer-related mortality worldwide. Given the importance of gastric cancer in public health, identifying biomarkers associated with disease onset is an important part of precision medicine. The hedgehog signaling pathway is considered as one of the most significant widespread pathways of intracellular signaling in the early events of embryonic development. This pathway contributes also to the maintenance of pluripotency of cancer stem cells pluripotency. In this study, we analyzed the expression levels of sonic hedgehog (Shh) signaling pathway genes IHH, BOC, RAB23a and their regulatory miRNAs including MIR-195-5p, MIR-509-3-5p, MIR-6738-3p in gastric cancer patients. In addition, the impact of infection status on the expression level of those genes and their regulatory miRNAs was investigated. One hundred samples taken from 50 gastric cancer patients (50 tumoral tissues and their adjacent non-tumoral counterparts) were included in this study. There was a significant difference in all studied genes and miRNAs in tumoral tissues in comparison with their adjacent non-tumoral counterparts. The lower expression of IHH, BOC, RAB23, miR-195-5p, and miR-6738-3p was significantly associated with more advanced cancer stage. Additionally, IHH upregulation was significantly associated with CMV infection (P < 0.001). Also, receiver operating characteristic (ROC) curve analysis indicated that mir-195 was significantly related to several clinicopathological features including tumor stage, grade, age, gender, and infection status of gastric cancer and can be considered as a potential diagnostic biomarker for gastric cancer. This study confirms the important role of Shh signaling pathway genes in gastric cancer tumorigenesis and their potential as novel molecular biomarkers and therapeutic targets.


2020 ◽  
Author(s):  
Yong Zhang ◽  
Zhengxia Zha ◽  
Wenhua Shen ◽  
Dan Li ◽  
Naixin Kang ◽  
...  

Abstract Background: Despite the increased morbidity of ulcerative colitis (UC) in the developing countries, available treatments remain unsatisfactory. Therefore, it is urgent to discover more effective therapeutic strategies. Pulsatilla chinensis was widely used for the treatment of inflamed intestinal diseases including UC for thousands of years in China. Anemoside B4, the most abundant triterpenoid saponin isolated from P. chinensis, exerts anti-inflammatory and antioxidant effects and may be the most active compounds, which is responsible for the therapeutic effects. However, the mechanism how anemoside B4 executes its biological functions is still elusive.Methods: Here, we used the 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis rat model to evaluate the therapeutic effect of anemoside B4. Blood samples of colitis rats were collected for hematology analysis. The inflammation-associated factors were investigated by enzyme-linked immunosorbent assay (ELISA). Cell proliferation and apoptosis was determined with EdU cell proliferation assay and TUNEL assay. The proteins regulated by anemoside B4 were identified by label-free quantitative proteomics. The significantly down-regulated proteins were verified by Western blotting analysis. mRNA expression was analyzed by quantitative real-time RT-PCR.Results: The results showed that anemoside B4 ameliorated TNBS-induced colitis symptoms, including tissue damage, inflammatory cell infiltration, and pro-inflammatory cytokine production, apoptosis and slowed proliferation in colon. Quantitative proteomic analyses discovered that 56 proteins were significantly altered by anemoside B4 in the TNBS-induced rats. These proteins mainly clustered in tricarboxylic acid (TCA) cycle and respiratory electron transport chain. Among the altered proteins, S100A9 is one of the most significantly down-regulated proteins and associated with NF-κB and MAPK signaling pathways in the pathogenesis of UC. Further experiments revealed that anemoside B4 suppressed the expression of S100A9 and its downstream genes including TLR4 and NF-κB in colon. In vitro, anemoside B4 could inhibit the NF-κB signaling pathway induced by recombinant S100A9 protein in human intestinal epithelial Caco-2 cells. Moreover, anemoside B4 inhibits neutrophils recruitment and activation in colon induced by TNBS.Conclusions: Our results demonstrate that anemoside B4 prevents TNBS-induced colitis by inhibiting the NF-κB signaling pathway through deactivating S100A9, suggesting that anemoside B4 is a promising therapeutic candidate for colitis.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shumin Zhang ◽  
Lianzhen Wang ◽  
Yuting Gao ◽  
Yanxia Fan ◽  
Gang Zhang ◽  
...  

Objective. This study is aimed at exploring the regulatory mechanism of 73HOXC-AS1 overexpression plasmid-activated Wntβ-catenin classic signaling pathway and eukaryotic initiation factor 4A (eIF4AIII) expression increased by lentivirus-eIF4AIII-RNAi (44682-1) (LV-eIF4AIII-RNAi (44682-1)). Methods. Focusing on the occurrence and progression of gastric cancer, the human gastric cancer cell line BGC823 (University Experimental Center) was taken as the research object and was transfected after subculture. According to the different ways of transfection, the cells were divided into the P1 group (LV-eIF4AIII-RNAi (44682-1) overexpressed plasmid), the P2 group (pcDNA-HOXC-AS1 overexpressed plasmid), the P3 group (LV-eIF4AIII-RNAi (44682-1) + pcDNA-HOXC-AS1), and the P4 group (no transfection, control group). Cell proliferation was detected by CCK-8 (Cell Counting Kit-8) assay, Western blotting was adopted to detect Wnt3a and P-GSK3β proteins, Transwell assay was adopted to detect the ability of cell migration and invasion, and cell cycle and apoptosis were detected by flow cytometry. Results. The results show that the protein expression levels of Wnt3a and P-GSK3β (glycogen synthase kinase-3β) in the P1 and P4 groups were lower than those in the P2 and P3 groups ( P < 0.05 ). The cell activity and clone number of BGC823 in the P3 group were higher than those in the P1, P2, and P4 groups ( P < 0.05 ). The apoptosis rate of BGC823 cells in the P3 group was significantly higher than those in the P1, P2, and P4 groups ( P < 0.05 ). The proportion of BGC823 cells in the P3 group at the S phase was significantly higher than those in the P1, P2, and P4 groups, while the proportion in the G2 phase was significantly lower than those in the P1, P2, and P4 groups ( P < 0.05 ). The number of migrating and invading BGC823 cells in the P3 group was significantly higher than those in the P1, P2, and P4 groups, while the number of migrating BGC823 cells in the P4 group was significantly lower than those in the P1 and P2 groups ( P < 0.05 ). Conclusion. The 73HOXC-AS1 overexpression plasmid-activated Wntβ-catenin classic signaling pathway and eIF4AIII expression increased by LV-eIF4AIII-RNAi (44682-1) could act together on BGC823 cells to improve cell proliferation activity, migration, and invasion; inhibit cell apoptosis; and prevent cells from entering the S phase.


2021 ◽  
Author(s):  
Li Xu ◽  
Chuangqi Mo ◽  
Ming Lu ◽  
Pingping Wang ◽  
Yue Liu

Abstract Background: Hypertensive intracerebral hemorrhage presented high incidence and high mortality owing to its difficult to diagnose. However, the molecular mechanism of HICH remains unclear. Therefore, this study aims to investigate the key miRNAs and the mechanism of the key miRNAs in HICH. Methods: miRNAs chip was used to explore the differentially expressed miRNAs in HICH patients. In vitro and in vivo HICH models were established by Ang-II. Cell Counting Kit-8 (CCK8), flow cytometry, transwell assay and tube formation analysis were used to detect cell proliferation, apoptosis, cell migration and tube formation, respectively. Hematoxylin-eosin staining was used to evaluate the intracerebral hemorrhage in vivo HICH model. The regulatory mechanism of miR-20a-5p in HICH was confirmed by dual luciferase reporter assay, immunofluorescence, qRT-PCR, western blot and rescue experiments. Results: miR-20a-5p showed the most downregulated in HICH patients compared with healthy individuals and significantly associated with clinicopathological characteristics of HICH. Upregulation of miR-20a-5p promoted cell proliferation, migration and tube formation while inhibited apoptosis in vitro and ameliorated the development of HICH in vivo. RBM24 is a direct target of miR-20a-5p and silencing RBM24 could partially recovery the development of HICH caused by miR-20a-5p inhibition both in vivo and in vitro. miR-20a-5p regulated the development of HICH depending on HIF1α/VEGFA pathway. Conclusion: Our results demonstrated that miR-20a-5p/RBM24 axis regulated hypertensive intracerebral hemorrhage via regulating HIF1α/VEGFA signaling pathway, in support of further investigation into miR-20a-5p therapies for HICH treatment.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1353
Author(s):  
A. Denise R. Garcia

The Sonic hedgehog (Shh) molecular signaling pathway is well established as a key regulator of neurodevelopment. It regulates diverse cellular behaviors, and its functions vary with respect to cell type, region, and developmental stage, reflecting the incredible pleiotropy of this molecular signaling pathway. Although it is best understood for its roles in development, Shh signaling persists into adulthood and is emerging as an important regulator of astrocyte function. Astrocytes play central roles in a broad array of nervous system functions, including synapse formation and function as well as coordination and orchestration of CNS inflammatory responses in pathological states. Neurons are the source of Shh in the adult, suggesting that Shh signaling mediates neuron–astrocyte communication, a novel role for this multifaceted pathway. Multiple roles for Shh signaling in astrocytes are increasingly being identified, including regulation of astrocyte identity, modulation of synaptic organization, and limitation of inflammation. This review discusses these novel roles for Shh signaling in regulating diverse astrocyte functions in the healthy brain and in pathology.


2018 ◽  
Vol 48 (6) ◽  
pp. 456-464 ◽  
Author(s):  
Jin Sug Kim ◽  
Kyung Sook Cho ◽  
Seon Hwa Park ◽  
Sang Ho Lee ◽  
Ji Hwan Lee ◽  
...  

Background: Peritoneal fibrosis is a devastating complication of peritoneal dialysis. However, its precise mechanism is unclear, and specific treatments have not yet been established. Recent evidence suggests that the sonic hedgehog (SHH) signaling pathway is involved in tissue fibrogenesis. Drugs that inhibit this pathway are emerging in the field of anti-fibrosis therapy. Itraconazole, an anti-fungal agent, was also recently recognized as an inhibitor of the SHH signaling pathway. In this study, we used a mouse model to investigate whether the SHH signaling pathway is involved in the development of peritoneal fibrosis and the effects of itraconazole on peritoneal fibrosis. Methods: Peritoneal fibrosis was induced by intraperitoneal (IP) injection of 0.1% chlorhexidine gluconate (CG) solution every other day for 4 weeks, with or without itraconazole treatment (20 mg/kg, IP injection on a daily basis). Male C57BL/6 mice were divided into 4 groups: saline group, saline plus itraconazole group, CG group, and CG plus itraconazole group. Isotonic saline was administered intraperitoneally to the control group. The peritoneal tissues were evaluated for histological changes, expression of fibrosis markers, and the main components of the SHH signaling pathway. Results: Peritoneal thickening was evident in the CG group and was significantly decreased by itraconazole administration (80.4 ± 7.7 vs. 28.2 ± 3.8 µm, p < 0.001). The expression of the following SHH signaling pathway components was upregulated in the CG group and suppressed by itraconazole treatment: SHH, patched, smoothened, and glioma-associated oncogene transcription factor 1. The IP injection of CG solution increased the expression of fibrosis markers such as α-smooth muscle actin and transforming growth factor-β1 in the peritoneal tissues. Itraconazole treatment significantly decreased the expression of these markers. Conclusion: Our study provides the first evidence that the SHH signaling pathway may be implicated in peritoneal fibrosis. It also demonstrates that itraconazole treatment has protective effects on peritoneal fibrosis through the regulation of the SHH signaling pathway. These findings suggest that blockage of the SHH signaling pathway is a potential therapeutic strategy for peritoneal fibrosis.


2013 ◽  
Vol 144 (5) ◽  
pp. S-804
Author(s):  
Nobuko Serizawa ◽  
Akihito Nagahara ◽  
Shunhei Yamashina ◽  
Gentaro Taniguchi ◽  
Sumio Watanabe

Sign in / Sign up

Export Citation Format

Share Document