scholarly journals Fused Filament Fabrication, a New Fabrication Paradigm for 3D Printing Capacitive Sensors: Design, Fabrication, and Characterization for Liquid Level Measurements.

Author(s):  
Gianni Stano ◽  
Attilio Di Nisio ◽  
Anna Maria Lanzolla ◽  
Mattia Ragolia ◽  
Gianluca Percoco

Abstract In recent years, the exploitation of Additive Manufacturing technologies for the fabrication of different kinds of sensors has abruptly increased: in particular, a growing interest for extrusion-based techniques has emerged. This research proposes the exploitation of Fused Filament Fabrication (FFF) process and two commercial materials (one flexible and one conductive) for the monolithic fabrication of a bendable, coplanar capacitive sensor. The whole sensor, consisting of a flexible substrate and two electrodes, has been fabricated in a single-step printing cycle: Design for Additive Manufacturing approach was used, setting out a methodology to direct 3D print thin and close tracks with conductive materials, in order to obtain high capacitance values measurable by common measurement instrumentations. Despite a huge exploitation of FFF technology for piezoresistive-based sensors, this manufacturing process has never been used for the fabrication of coplanar capacitive sensors since the manufacture of thin and close conductive tracks (key requirement in coplanar capacitive sensors) is a challenging task, mainly due to low manufacturability of extruded conductive beads with a high level of detail. Two versions of the sensor were developed: the first one with an embedded 3D printed coverage (ready to use) and the second one which requires a further manual post-processing to seal the electrodes. The main benefits related to the exploitation of FFF technology for these sensors are: i) the reduction of the number of different manufacturing processes employed, from at least two in traditional manufacturing approach up to one, ii) the exploitation of a cost-effective technology compared to traditional high-cost technologies employed (i.e. lithography, inkjet etc.) iii) the reduction of manual and assembly tasks (one of the proposed versions does not require any further task) , and iv) the cost-effectiveness of the sensors (in a range between 0.27 € and 0.38 €). The two developed prototypes have been tested demonstrating all their potentialities in the field of liquid level sensing, showing results consistent with the ones found in scientific literature: good sensitivity and high linearity and repeatability were proved when different liquids were employed. These 3D printed liquid level sensors have these features: i) flexible sensor, ii) the length is limited only by the machine workspace, iii) they can be either applied outside of the traditional reservoirs or embedded into the reservoirs (by 3D printing both the reservoir and sensor in the same manufacturing cycle), and iv) simple calibration.Finally, the bendability of these sensors paves the way toward their application for liquid level sensing into tanks with non-conventional shapes and for other application fields (i.e. soft robotics, non-invasive monitoring for biomedical applications).

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Liang Wu ◽  
Stephen Beirne ◽  
Joan-Marc Cabot Canyelles ◽  
Brett Paull ◽  
Gordon G. Wallace ◽  
...  

Additive manufacturing (3D printing) offers a flexible approach for the production of bespoke microfluidic structures such as the electroosmotic pump. Here a readily accessible fused filament fabrication (FFF) 3D printing...


Author(s):  
Frank Celentano ◽  
Nicholas May ◽  
Edward Simoneau ◽  
Richard DiPasquale ◽  
Zahra Shahbazi ◽  
...  

Professional musicians today often invest in obtaining antique or vintage instruments. These pieces can be used as collector items or more practically, as performance instruments to give a unique sound of a past music era. Unfortunately, these relics are rare, fragile, and particularly expensive to obtain for a modern day musician. The opportunity to reproduce the sound of an antique instrument through the use of additive manufacturing (3D printing) can make this desired product significantly more affordable. 3D printing allows for duplication of unique parts in a low cost and environmentally friendly method, due to its minimal material waste. Additionally, it allows complex geometries to be created without the limitations of other manufacturing techniques. This study focuses on the primary differences, particularly sound quality and comfort, between saxophone mouthpieces that have been 3D printed and those produced by more traditional methods. Saxophone mouthpieces are commonly derived from a milled blank of either hard rubber, ebonite or brass. Although 3D printers can produce a design with the same or similar materials, they are typically created in a layered pattern. This can potentially affect the porosity and surface of a mouthpiece, ultimately affecting player comfort and sound quality. To evaluate this, acoustic tests will be performed. This will involve both traditionally manufactured mouthpieces and 3D prints of the same geometry created from x-ray scans obtained using a ZEISS Xradia Versa 510. The scans are two dimensional images which go through processes of reconstruction and segmentation, which is the process of assigning material to voxels. The result is a point cloud model, which can be used for 3D printing. High quality audio recordings of each mouthpiece will be obtained and a sound analysis will be performed. The focus of this analysis is to determine what qualities of the sound are changed by the manufacturing method and how true the sound of a 3D printed mouthpiece is to its milled counterpart. Additive manufacturing can lead to more inconsistent products of the original design due to the accuracy, repeatability and resolution of the printer, as well as the layer thickness. In order for additive manufacturing to be a common practice of mouthpiece manufacturing, the printer quality must be tested for its precision to an original model. The quality of a 3D print can also have effects on the comfort of the player. Lower quality 3D prints have an inherent roughness which can cause discomfort and difficulty for the musician. This research will determine the effects of manufacturing method on the sound quality and overall comfort of a mouthpiece. In addition, we will evaluate the validity of additive manufacturing as a method of producing mouthpieces.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1487 ◽  
Author(s):  
Yuhan Liao ◽  
Chang Liu ◽  
Bartolomeo Coppola ◽  
Giuseppina Barra ◽  
Luciano Di Maio ◽  
...  

Additive manufacturing (AM) is a promising technology for the rapid tooling and fabrication of complex geometry components. Among all AM techniques, fused filament fabrication (FFF) is the most widely used technique for polymers. However, the consistency and properties control of the FFF product remains a challenging issue. This study aims to investigate physical changes during the 3D printing of polylactic acid (PLA). The correlations between the porosity, crystallinity and mechanical properties of the printed parts were studied. Moreover, the effects of the build-platform temperature were investigated. The experimental results confirmed the anisotropy of printed objects due to the occurrence of orientation phenomena during the filament deposition and the formation both of ordered and disordered crystalline forms (α and δ, respectively). A heat treatment post-3D printing was proposed as an effective method to improve mechanical properties by optimizing the crystallinity (transforming the δ form into the α one) and overcoming the anisotropy of the 3D printed object.


2020 ◽  
Vol 2 ◽  
pp. 42 ◽  
Author(s):  
James I. Novak ◽  
Jennifer Loy

In response to shortages in personal protective equipment (PPE) during the COVID-19 pandemic, makers, community groups and manufacturers around the world utilised 3D printing to fabricate items, including face shields and face masks for healthcare workers and the broader community. In reaction to both local and global needs, numerous designs emerged and were shared online. In this paper, 37 face shields and 31 face masks suitable for fused filament fabrication were analysed from a fabrication perspective, documenting factors such as filament use, time to print and geometric qualities. 3D print times for similar designs varied by several hours, meaning some designs could be produced in higher volumes. Overall, the results show that face shields were approximately twice as fast to 3D print compared to face masks and used approximately half as much filament. Additionally, a face shield typically required 1.5 parts to be 3D printed, whereas face masks required 5 3D printed parts. However, by quantifying the print times, filament use, 3D printing costs, part dimensions, number of parts and total volume of each design, the wide variations within each product category could be tracked and evaluated. This data and objective analysis will help makers, manufacturers, regulatory bodies and researchers consolidate the 3D printing response to COVID-19 and optimise the ongoing strategy to combat supply chain shortages now and in future healthcare crises.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4273
Author(s):  
Helen A. Little ◽  
Nagendra G. Tanikella ◽  
Matthew J. Reich ◽  
Matthew J. Fiedler ◽  
Samantha L. Snabes ◽  
...  

This study explores the potential to reach a circular economy for post-consumer Recycled Polyethylene Terephthalate (rPET) packaging and bottles by using it as a Distributed Recycling for Additive Manufacturing (DRAM) feedstock. Specifically, for the first time, rPET water bottle flake is processed using only an open source toolchain with Fused Particle Fabrication (FPF) or Fused Granular Fabrication (FGF) processing rather than first converting it to filament. In this study, first the impact of granulation, sifting, and heating (and their sequential combination) is quantified on the shape and size distribution of the rPET flakes. Then 3D printing tests were performed on the rPET flake with two different feed systems: an external feeder and feed tube augmented with a motorized auger screw, and an extruder-mounted hopper that enables direct 3D printing. Two Gigabot X machines were used, each with the different feed systems, and one without and the latter with extended part cooling. 3D print settings were optimized based on thermal characterization, and both systems were shown to 3D print rPET directly from shredded water bottles. Mechanical testing showed the importance of isolating rPET from moisture and that geometry was important for uniform extrusion. The mechanical strength of 3D-printed parts with FPF and inconsistent flow is lower than optimized fused filament, but adequate for a wide range of applications. Future work is needed to improve consistency and enable water bottles to be used as a widespread DRAM feedstock.


2021 ◽  
pp. 004051752110062
Author(s):  
Jordan Kalman ◽  
Kazem Fayazbakhsh ◽  
Danielle Martin

Fused filament fabrication (FFF) 3D printing can be used for manufacturing flexible isogrid structures. This work presents a novel draping analysis of flexible 3D printed isogrids from thermoplastic polyurethane (TPU) using image processing. A small-scale multi-camera automated draping apparatus (ADA) is designed and used to characterize draping behavior of 3D printed isogrid structures based on draping coefficient (DC) and mode. Circular specimens are designed and 3D printed that accommodate up to eight additional weights on their perimeters to enhance draping. Five infill patterns, three infill percentages, and three loading cases are explored to evaluate their impact on specimens’ draping coefficient and mode, resulting in 45 tests. The range of DCs in this study is 21.9% to 91.5%, and a large range of draping modes is observed. For the lowest infill percentage, specimen mass is not the sole contributor to the DC values and the infill pattern has a significant impact for the three loading cases. Considering draping modes, the maximum number of convex and concave nodes observed for 25% infill specimens with added weights is three. The draping behavior characterization developed in this study can be followed to design and 3D print new flexible isogrids with textile applications.


2020 ◽  
Vol 2 ◽  
pp. 24 ◽  
Author(s):  
James I. Novak ◽  
Jennifer Loy

The COVID-19 pandemic significantly increased demand for medical and protective equipment by frontline health workers, as well as the general community, causing the supply chain to stretch beyond capacity, an issue further heightened by geographical and political lockdowns. Various 3D printing technologies were quickly utilised by businesses, institutions and individuals to manufacture a range of products on-demand, close to where they were needed. This study gathered data about 91 3D printed projects initiated prior to April 1, 2020, as the virus spread globally. It found that 60% of products were for personal protective equipment, of which 62% were 3D printed face shields. Fused filament fabrication was the most common 3D print technology used, and websites were the most popular means of centralising project information. The project data provides objective, quantitative insight balanced with qualitative critical review of the broad trends, opportunities and challenges that could be used by governments, health and medical bodies, manufacturing organisations and the 3D printing community to streamline the current response, as well as plan for future crises using a distributed, flexible manufacturing approach.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 545
Author(s):  
Krzysztof Rodzeń ◽  
Preetam K. Sharma ◽  
Alistair McIlhagger ◽  
Mozaffar Mokhtari ◽  
Foram Dave ◽  
...  

The manufacture of polyetheretherketone/hydroxyapatite (PEEK/HA) composites is seen as a viable approach to help enhance direct bone apposition in orthopaedic implants. A range of methods have been used to produce composites, including Selective Laser Sintering and injection moulding. Such techniques have drawbacks and lack flexibility to manufacture complex, custom-designed implants. 3D printing gets around many of the restraints and provides new opportunities for innovative solutions that are structurally suited to meet the needs of the patient. This work reports the direct 3D printing of extruded PEEK/HA composite filaments via a Fused Filament Fabrication (FFF) approach. In this work samples are 3D printed by a custom modified commercial printer Ultimaker 2+ (UM2+). SEM-EDX and µCT analyses show that HA particles are evenly distributed throughout the bulk and across the surface of the native 3D printed samples, with XRD highlighting up to 50% crystallinity and crystalline domains clearly observed in SEM and HR-TEM analyses. This highlights the favourable temperature conditions during 3D printing. The yield stress and ultimate tensile strength obtained for all the samples are comparable to human femoral cortical bone. The results show how FFF 3D printing of PEEK/HA composites up to 30 wt% HA can be achieved.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2518
Author(s):  
Nunzio Cennamo ◽  
Lorena Saitta ◽  
Claudio Tosto ◽  
Francesco Arcadio ◽  
Luigi Zeni ◽  
...  

In this work, a novel approach to realize a plasmonic sensor is presented. The proposed optical sensor device is designed, manufactured, and experimentally tested. Two photo-curable resins are used to 3D print a surface plasmon resonance (SPR) sensor. Both numerical and experimental analyses are presented in the paper. The numerical and experimental results confirm that the 3D printed SPR sensor presents performances, in term of figure of merit (FOM), very similar to other SPR sensors made using plastic optical fibers (POFs). For the 3D printed sensor, the measured FOM is 13.6 versus 13.4 for the SPR-POF configuration. The cost analysis shows that the 3D printed SPR sensor can be manufactured at low cost (∼15 €) that is competitive with traditional sensors. The approach presented here allows to realize an innovative SPR sensor showing low-cost, 3D-printing manufacturing free design and the feasibility to be integrated with other optical devices on the same plastic planar support, thus opening undisclosed future for the optical sensor systems.


Sign in / Sign up

Export Citation Format

Share Document