Using Caenorhabditis Elegans As An Environmental Indicator for Impaired Urbanized Watersheds

Author(s):  
Carresse Gerald ◽  
Boris Deshazo ◽  
Hayden Patterson ◽  
Porché Spence

Abstract Background Third Fork Creek is a historically impaired urban stream that flows through the city of Durham, North Carolina. Caenorhabditis elegans (C. elegans) are non-parasitic, soil and aquatic dwelling nematodes that have been used frequently as a biological and ecotoxicity model. We hypothesize that exposure to Third Fork Creek surface water will inhibit the reproduction and chemotaxis of C. elegans. Using our ring assay model, nematodes were enticed to cross the impaired water samples to reach a bacterial food source which allowed observation of chemotaxis. The total number of nematodes found in the bacterial food source and the middle of the plate with the impaired water source was recorded for three days. Results Our findings suggest a reduction in chemotaxis and reproduction on day three in nematodes exposed to Third Fork Creek water samples when compared to the control (pvalue<0.05). These exploratory data provide meaningful insight to the quality of Third Fork Creek located near a Historically Black University. Conclusions Further studies are necessary to elucidate the concentrations of the water contaminants and implications for human health. The relevance of this study lies within the model C. elegans, that has been used in a plethora of human diseases and exposure research but can be utilized as an environmental indicator of water quality impairment.

2022 ◽  
Vol 34 (1) ◽  
Author(s):  
Carresse Gerald ◽  
Boris Deshazo ◽  
Hayden Patterson ◽  
Porché Spence

Abstract Background Third Fork Creek is a historically impaired urban stream that flows through the city of Durham, North Carolina. Caenorhabditis elegans (C. elegans) are non-parasitic, soil and aquatic dwelling nematodes that have been used frequently as a biological and ecotoxicity model. We hypothesize that exposure to Third Fork Creek surface water will inhibit the growth and chemotaxis of C. elegans. Using our ring assay model, nematodes were enticed to cross the water samples to reach a bacterial food source which allowed observation of chemotaxis. The total number of nematodes found in the bacterial food source and the middle of the plate with the water source was recorded for 3 days. Results Our findings suggest a reduction in chemotaxis and growth on day three in nematodes exposed to Third Fork Creek water samples when compared to the control (p value < 0.05). These exploratory data provide meaningful insight to the quality of Third Fork Creek located near a Historically Black University. Conclusions Further studies are necessary to elucidate the concentrations of the water contaminants and implications for human health. The relevance of this study lies within the model C. elegans that has been used in a plethora of human diseases and exposure research but can be utilized as an environmental indicator of water quality impairment.


Author(s):  
Sophie Fantillo ◽  
BCIT School of Health Sciences, Environmental Health ◽  
Helen Heacock

  Background: Heterotrophic bacteria are commonly found in water supplies where there is inadequate or non-existent disinfection. Water coolers are known to have high HPC levels due to the filtered, non-chlorinated water provided. Water bottle refill stations utilize a carbon filter which can act as a food source for HPC. This study measured HPC levels in water samples from bottle refill stations to determine whether there is a difference compared to tap water at BCIT. Method: Standard Method 9060 A was used to collect water from bottle refill stations to compare to non-filtered tap water. Samples were plated using R2A Agar and incubated for 7 days before enumerating HPC from water samples. Samples were collected from specific drinking water fountains that contained Carbon Filters and compared to the nearest tap water source. Results: Mean HPC levels in bottle refill stations were found at 95 cfu/mL while mean HPC levels in tap water were 55 cfu/mL. A two-sample T-test confirmed that the mean HPC levels of bottle refill stations and tap water are statistically significantly different (P= 0.000124). Although the findings were statistically significant, the study’s power was low at 11%. Conclusion: Based on the results, drinking water obtained from bottle-refill stations at BCIT contained on an average higher level of HPC compared to tap water. Overall, HPC levels were below recommended levels in drinking water and not considered to have any harmful effects. To continue the safe use of bottle refill stations, facilities should develop and follow written procedures to maintain stations and ensure regular changing of filters.  


2018 ◽  
Vol 8 (3) ◽  
pp. 497-507
Author(s):  
Philip Ruciaka Kirianki ◽  
Edward Muchiri ◽  
Natasha Potgieter

Abstract Njoro sub-county in Kenya suffers from constant water shortages causing the residents to rely on both improved and unimproved water sources in the area. The households in the sub-county also use different household storage containers to store drinking water in times when water is not readily available. This study was therefore undertaken to assess selective physico-chemical parameters of water used by the population for drinking purposes using standard assessment methods. A total of 372 water source samples and 162 storage container water samples were tested over a period of three months. Turbidity (0.70–273.85 NTU), iron (0.7–2.10 mg/L), fluoride (0.15–4.01 mg/L), manganese (0.01–0.37 mg/L), and nitrate (0.09–27.90 mg/L) levels in water samples were generally higher than the Kenya Bureau of Standards (KEBS) and/or the World Health Organization (WHO) water quality recommendations for safe drinkable water. The results from this study support the need for continuous monitoring and treating drinking water at the points of collection and of consumption to minimize the long-term health effects on communities consuming this water.


Author(s):  
Aseem Saxena

Fluorine is the most electronegative and most reactive halogen. Fluorine is 13th most common element on earth crust found in the form of fluoride. Concentration of fluoride below 1 mg/l are believed beneficial in the prevention of dental carries or tooth decay, but above 1.5mg/l, it increases the severity of the deadly diseases fluorosis, which is incurable in India. The whole study was conducted in Gorakhpur region to know about the concentration of fluoride, mainly in rural areas of the district. We have collected 64 drinking water samples from 9 blocks of the district in which we took 6 number of ground water samples from each block so total 54 number of samples were collected from the groundwater source and 8 number of samples were taken from surface water source. Out of 54 ground water samples, 36 numbers of samples were taken from India Mark-II hand pumps and rest 18 number of samples were taken from shallow depth hand pumps and tested to determine the concentration of fluoride. From our assessment we came to know that in this region the concentration of fluoride in groundwater ranges between 0.004 to 1.42mg/l, minimum value is found in the surface water source and the maximum value is found from the ground water source.The samples collected from both ground water and as well as surface water were taken from potable sources i.e. they are used for drinking purposes in daily routine. After the testing and analyzing the samples it is come to know that surface water has quite lower levels fluoride compare to ground water. The conclusion of this work is to give information about the concentration of fluoride in groundwater and surface water of the district.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Jaclyn Arquiette ◽  
Michael P. Stevens ◽  
Jean M. Rabb ◽  
Kakotan Sanogo ◽  
Patrick Mason ◽  
...  

Water purification in the rural Honduras is a focus of the nonprofit organization Honduras Outreach Medical Brigade Relief Effort (HOMBRE). We assessed water filter use and tested filter microbiologic and clinical efficacy. A 22-item questionnaire assessed water sources, obtainment/storage, purification, and incidence of gastrointestinal disease. Samples from home clay-based filters in La Hicaca were obtained and paired with surveys from the same home. We counted bacterial colonies of four bacterial classifications from each sample. Sixty-five surveys were completed. Forty-five (69%) individuals used a filter. Fifteen respondents reported diarrhea in their home in the last 30 days; this incidence was higher in homes not using a filter. Thirty-three paired water samples and surveys were available. Twenty-eight samples (85%) demonstrated bacterial growth. A control sample was obtained from the local river, the principal water source; number and bacterial colony types were innumerable within 24 hours. Access to clean water, the use of filters, and other treatment methods differed within a geographically proximal region. Although the majority of the water samples failed to achieve bacterial eradication, water filters may sufficiently reduce bacterial coliform counts to levels below infectious inoculation. Clay water filters may be sustainable water treatment measures in resource poor settings.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Hao Wu ◽  
Jie Chen ◽  
Hui Qian ◽  
Xuedi Zhang

This work is aimed at reviewing the chemical characteristics and evaluation of the quality of exploited groundwater in Beijiao water source of Yinchuan. A coupled model based on osculating value method (OVM) and entropy is proposed to determine the suitability for drinking. Besides, phreatic water and confined water are evaluated for irrigation purposes and industrial purposes, respectively. Piper diagram shows different hydrochemical characteristics between aquifers, which can be explained by the control mechanisms revealed by Gibbs diagram. Chloroalkaline indices and ions relationship indicate that reverse ion exchanges occur in different aquifers. Based on the osculating values, 96% of the phreatic water samples are fit for human consumption, and the confined water can provide quality drinking water. Most of the phreatic water samples have no sodium hazard but have magnesium hazard. All the confined water samples generate mild foaming reaction, and 93% of them are mildly corrosive for boilers. An assessment by OVM without entropy is calculated. Similar results to the coupled model demonstrate that pure OVM is also objective and valid. The simple algorithm turns multicriteria decision-making problems into an integrated index which is just as useful to water quality assessment.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S443-S443
Author(s):  
Chetan Jinadatha ◽  
John David Coppin ◽  
Shantini D Gamage ◽  
Stephen Kralovic ◽  
Gary Roselle

Abstract Background VHA Legionella prevention policy requires quarterly testing of potable water samples, for its 170 medical facilities (“stations”) distributed across the United States. We modeled the variability in Legionella positivity rates by location structure and by time to understand Legionella prevalence and distribution across VHA nationwide. Our goal was to understand when, where and why variations in Legionella positivity happens across VHA facilities. Methods Data from quarterly water samples from sinks and showers from 2015 through 2017 and for which complete information was reported were used for the model. A multi-level Bayesian logistic regression model was run in R version 3.5.1. The hierarchical location group levels consisted of room nested within floor, within building, within station, within region. The time group-level effects included quarter nested within year. Variabilities within groups were estimated as standard deviation (SD) on the log-odds scale. Results Among 138,553 samples, there was little seasonal effect (SD: 0.32) in Legionella positivity based on the quarter in which they were sampled. The largest variability in Legionella positivity occurred at the station level (SD: 2.38), with substantial variation at the building level also (SD: 1.85). The 5% of stations most likely to be positive for Legionella represented only 7.5% of total samples but accounted for 39.7% of all positive samples. The 5% of stations least likely to be positive for Legionella represented 10.4% of total samples, but only had 2 positive samples. Conclusion Buildings with the highest probability for Legionella positivity are clustered together within stations. We saw no major seasonal variations in Legionella positivity across facilities. We were able to better predict stations with higher positivity as well as lower overall positivity for Legionella water sampling. The observed dominant station-level effects could be due to overarching influences such as a single water source and suggests approaches at this level can impact Legionella control. These results demonstrate a mechanism for understanding the distribution and probability of Legionella and can inform prevention practices and future policy. Disclosures All authors: No reported disclosures.


2019 ◽  
Vol 21 (15) ◽  
pp. 5832-5837 ◽  
Author(s):  
Franziska Dolke ◽  
Chuanfu Dong ◽  
Siva Bandi ◽  
Christian Paetz ◽  
Gaétan Glauser ◽  
...  

2016 ◽  
Vol 5 (1) ◽  
pp. 60 ◽  
Author(s):  
Benedicta Y. Fosu-Mensah ◽  
Elvis D. Okoffo ◽  
Michael Mensah

The contamination of pesticides in 32 soils and 64 drinking water samples was investigated from cocoa farms in the Dormaa West District of Ghana to assess pollution status. A total of nine synthetic pyrethroids pesticides were measured with a high resolution Varian CP-3800 Gas Chromatograph equipped with <sup>63</sup>Ni electron capture detector (ECD). Eight synthetic pyrethroid residues namely fenvalerate, deltamethrin, cypermethrin, bifenthrin, permethrin, lambda-cyhalothrin, allethrin and cyfluthrin were detected with lambda-cyhalothrin and allethrin occurring most frequently in soil and water respectively. The concentrations of synthetic pyrethroids residues in the soil samples were in the ranges of; 0.02-0.03 mg/kg for lambda-cyhalothrin, 0.010-0.02 mg/kg for allethrin, 0.010-0.04 mg/kg for cyfluthrin, &lt;0.01-0.04 mg/kg for cypermethrin, 0.02-0.06 mg/kg for deltamethrin, and &lt;0.01-0.03 mg/kg for bifenthrin. Similarly, the synthetic pyrethroids residues in the water samples were in the ranges of; 0.01-0.05 µg/L for allethrin, 0.01-0.04 µg/L for fenvalerate, 0.01-0.04 µg/L for cypermethrin and 0.01-0.05 µg/L for deltamethrin. The concentrations of synthetic pyrethroids pesticide residues recorded in the soil samples analysed were generally below and within their respective US MRLs for agricultural soils, except the mean concentration values recorded for pesticides such as lambda-cyhalothrin at Diabaa (S2) and Krakrom (S3), allethrin at Diabaa (S2) and deltamethrin at Kwakuanya (S4), which were above their respective US MRLs for agricultural soils. The trends of synthetic pyrethroids pesticide residues in the water samples analysed from the various distances to cocoa farms decreased with an increase of water source to cocoa farm (ranking; 0-15m&gt;16-30m&gt;above 30m). All synthetic pyrethroids pesticide residues recorded in the water samples were below and within their respective WHO MRLs for drinking water except for deltamethrin, which exceeded the WHO MRL at Kwakuanya (S4) at distance 0-15m from a cocoa farm. The presence of synthetic pyrethroids residues in the soil and water samples analysed is an indication of the use of the pesticide by cocoa farmers in the study area. The routine monitoring of pesticide residues in the study area is necessary for the control and reduction of environmental pollution.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1228
Author(s):  
Natasha Potgieter ◽  
Clarissa van der Loo ◽  
Tobias George Barnard

This study investigated the co-existence of potential human pathogenic bacteria and free-living amoebae in samples collected from stored water in rural households in South Africa using borehole water as a primary water source. Over a period of 5 months, a total of 398 stored water and 392 biofilm samples were collected and assessed. Free-living amoebae were identified microscopically in 92.0% of the water samples and 89.8% of the biofilm samples. A further molecular identification using 18S rRNA sequencing identified Vermamoeba vermiformis, Entamoeba spp., Stenamoeba spp., Flamella spp., and Acanthamoeba spp. including Acanthamoeba genotype T4, which is known to be potentially harmful to humans. Targeted potential pathogenic bacteria were isolated from the water samples using standard culture methods and identified using 16S rRNA sequencing. Mycobacterium spp., Pseudomonas spp., Enterobacter spp., and other emerging opportunistic pathogens such as Stenotrophomonas maltophilia were identified. The results showed the importance of further studies to assess the health risk of free-living amoebae and potential human pathogenic bacteria to people living in rural communities who have no other option than to store water in their homes due to water shortages.


Sign in / Sign up

Export Citation Format

Share Document