scholarly journals An Adaptive Water Resources Management Framework With Combined Policies to Confront Adverse Effects and Risks Due to Population-industry Transformation Into a Floodplain Area

Author(s):  
Xueting Zeng ◽  
Junlong Zhang ◽  
Jia Liu

Abstract In this study, an adaptive water resource management framework with combined policies (AWFP) is developed for mitigating adverse effects on water resource in a floodplain area due to population-industry transformation in context of coordinative development of urban agglomeration. A location-entropy based PVRA model (LE-PCRA) and coupla-risk analysis (CRA) can be introduced to reflect the adverse effects of industrial information and driven population on water resources; meanwhile risks (including water shortage, soil loss and flood control) and corresponding correlations have been shown in the risk maps. Moreover, an adaptive scenario analysis based stochastic-fuzzy method (ASSF) can be embedded into an AWFP to deal with multiple uncertainties and their interactions due to subjective and artificial factors. The proposed AWFP is applied to a practical case study of Yongding river floodplain region for confronting adverse effects on water resources due to population-industry transformation in the context of coordinative development of Beijing-Tianjin-Hebei urban agglomeration, China. The results were obtained to reflect the negative effects of population-industry transformation and corresponding water allocation patterns in floodplain, which is effective to confront natural and artificial damages (such as water deficit, water and soil loss, and flood damage), risks and function degradation of floodplain contemporarily. Meanwhile, various policy scenarios (such as farmland returning to wetland, improvement of water resource utilization efficiency, water diversion and flood control) can be analyzed to support adjusting current population-economy strategies and water management patterns to accommodate source function of floodplain with a risk-averse and sustainable manner.

2020 ◽  
Vol 51 (6) ◽  
pp. 1409-1436
Author(s):  
Yayu Gao ◽  
Xiaoyou Zhang ◽  
Xinmin Zhang ◽  
Duan Li ◽  
Min Yang ◽  
...  

Abstract Among the most widespread structures for successfully retaining water and checking erosion on the semi-arid portions of China's Loess Plateau, check dams retain silt at slower than projected rates, leading to flood control issues. Meanwhile, the shortage and the uneven distribution of time and space of water resources in semi-arid areas can easily cause droughts and floods, which seriously restricted the rapid development of the socioeconomic. However, some of the high-quality rain and flood resources accumulated in the check dams can be used to alleviate part of the water resources crisis instead of causing flood. With the goal of holistically maximizing a projected check dam array's water resource, ecosystem and socioeconomic benefits, a Check Dam Benefit Maximization Model (CDBMM) was first developed. The CDBMM was first applied to the Si Jiagou Basin, and the model showed the total costs represent 7.07% of the total and rather significant benefits. Water resources benefits accounting for 45.40% of the total benefits, indicating that the water resources benefits were substantial and should be considered as the main influencing factors in the basin's ecosystem-friendly design and construction. Use of the CDBMM in watershed planning will allow a more efficient use of water and soil resources and greatly alleviate water crises in the semi-arid area. It can further provide a reference for both check dam system planning and the system benefits analysis.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1588
Author(s):  
Hui Zhang ◽  
Jiaying Li

Under the current administrative system (AS) in China, the water resources governor allocates limited water resources to several users to realize the utility of water resources, leading to a principal–agent problem. The governor (referred to as the principal and she) wishes to maximize water resource allocation efficiency, while each user (referred to as the agent and he) only wishes to maximize his own quota. In addition, the governor cannot know water demand information exactly since it is the water users’ private information. Hence, this paper builds an ex ante improved bankruptcy allocation rule and an ex post verification and reward mechanism to improve water allocation efficiency from the governor’s perspective. In this mechanism, the governor allocates water among users based on an improved bankruptcy rule before the water is used up, verifies users’ information by various approaches, and poses a negative reward to them if their information is found to be false after the water is used up. Then, this mechanism is applied to Huangbai River Basin. Research results show that the improved allocation rule could motivate users to report demand information more honestly, and ex post verification could motivate water users to further report their true information, which, as a result, could improve the water allocation efficiency. Furthermore, this mechanism could be applied to the allocation of other resources.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liying Liu

AbstractThis paper presents the assessment of water resource security in the Guizhou karst area, China. A mean impact value and back-propagation (MIV-BP) neural network was used to understand the influencing factors. Thirty-one indices involving five aspects, the water quality subsystem, water quantity subsystem, engineering water shortage subsystem, water resource vulnerability subsystem, and water resource carrying capacity subsystem, were selected to establish an evaluation index of water resource security. In addition, a genetic algorithm and back-propagation (GA-BP) neural network was constructed to assess the water resource security of Guizhou Province from 2001 to 2015. The results show that water resource security in Guizhou was at a moderate warning level from 2001 to 2006 and a critical safety level from 2007 to 2015, except in 2011 when a moderate warning level was reached. For protection and management of water resources in a karst area, the modes of development and utilization of water resources must be thoroughly understood, along with the impact of engineering water shortage. These results are a meaningful contribution to regional ecological restoration and socio-economic development and can promote better practices for future planning.


2019 ◽  
Vol 11 (22) ◽  
pp. 6463 ◽  
Author(s):  
Li ◽  
Yin ◽  
Zhang ◽  
Croke ◽  
Guo ◽  
...  

The Beijing-Tianjin-Hebei (Jingjinji) region is the most densely populated region in China and suffers from severe water resource shortage, with considerable water-related issues emerging under a changing context such as construction of water diversion projects (WDP), regional synergistic development, and climate change. To this end, this paper develops a framework to examine the water resource security for 200 counties in the Jingjinji region under these changes. Thus, county-level water resource security is assessed in terms of the long-term annual mean and selected typical years (i.e., dry, normal, and wet years), with and without the WDP, and under the current and projected future (i.e., regional synergistic development and climate change). The outcomes of such scenarios are assessed based on two water-crowding indicators, two use-to-availability indicators, and one composite indicator. Results indicate first that the water resources are distributed unevenly, relatively more abundant in the northeastern counties and extremely limited in the other counties. The water resources are very limited at the regional level, with the water availability per capita and per unit gross domestic product (GDP) being only 279/290 m3 and 46/18 m3 in the current and projected future scenarios, respectively, even when considering the WDP. Second, the population carrying capacity is currently the dominant influence, while economic development will be the controlling factor in the future for most middle and southern counties. This suggests that significant improvement in water-saving technologies, vigorous replacement of industries from high to low water consumption, as well as water from other supplies for large-scale applications are greatly needed. Third, the research identifies those counties most at risk to water scarcity and shows that most of them can be greatly relieved after supplementation by the planned WDP. Finally, more attention should be paid to the southern counties because their water resources are not only limited but also much more sensitive and vulnerable to climate change. This work should benefit water resource management and allocation decisions in the Jingjinji region, and the proposed assessment framework can be applied to other similar problems.


2017 ◽  
Vol 7 (4) ◽  
pp. 611-622 ◽  
Author(s):  
Margaret T. Person ◽  
Maryann G. Delea ◽  
Joshua V. Garn ◽  
Kelly Alexander ◽  
Bekele Abaire ◽  
...  

Abstract Despite considerable investment, sustainability of rural water resources remains a critical challenge in Ethiopia. Evidence suggests social capital – the networks, norms, and trust that facilitate cooperative behaviors – influences a community's ability to manage communal water resources. In turn, strong community governance of water resources may lead to sustainable resource management. Existing evidence provides a framework for exploring the relationship between social capital and governance of common-pool resources. However, there is a dearth of quantifiable evidence demonstrating the relationship between social capital, collaborative governance, and, in turn, sustainability of communal water resources. In 32 communities in rural Ethiopia, we employed a validated survey tool, developed by the World Bank, to quantify social capital and explore these relationships. We found associations between governance and several social capital domains: groups and networks, trust and solidarity, and information and communication. All governance indicators were associated with functionality. Identifying domains of social capital that influence governance can inform institutional efforts to target community-based water resource programming, foster social capital to improve water point sustainability, and diagnose issues related to resource management. Additional research examining the influence and directionality of social capital and other social constructs on water resource governance and functionality is warranted.


2014 ◽  
Vol 9 (4) ◽  
pp. 509-518
Author(s):  
R. Shahsavan ◽  
M. Shourian

Water storage using dams is a perfect solution for agricultural, industrial, drinking water supply, flood control, hydroelectric power generation, and other purposes. Integrated management of water resources involves the development, management, protection, regulation and beneficial use of surface- and ground- water resources. The reliability of water supply reservoirs depends on several factors, e.g. the physical characteristics of the reservoir, the time series of river discharge, climatic conditions, the amount of demand, and the method of operation. If a portion of a dam's volume is kept empty for flood control, the confidence values of taking the bottom water demand will be reduced. In this paper, a yield-storage model developed in a MATLAB software environment is used to determine the optimal capacity of Darband dam in northeast Iran (the study phase). The reservoir's performance with respect to demand downstream, e.g. from industry and agriculture, and for potable use, was studied, and the results compared for scenarios in flood control volume change conditions. The results show that, for a capacity of 80 Mm3, the reliability values for meeting agricultural, environmental, and potable water demand are estimated at 0.922, 0.927, and 0.942, respectively. If the reservoir's capacity is changed from 80 to 350 Mm3, the reliability values increase by only about 7%.


2016 ◽  
Vol 20 (5) ◽  
pp. 1869-1884 ◽  
Author(s):  
Claire L. Walsh ◽  
Stephen Blenkinsop ◽  
Hayley J. Fowler ◽  
Aidan Burton ◽  
Richard J. Dawson ◽  
...  

Abstract. Globally, water resources management faces significant challenges from changing climate and growing populations. At local scales, the information provided by climate models is insufficient to support the water sector in making future adaptation decisions. Furthermore, projections of change in local water resources are wrought with uncertainties surrounding natural variability, future greenhouse gas emissions, model structure, population growth, and water consumption habits. To analyse the magnitude of these uncertainties, and their implications for local-scale water resource planning, we present a top-down approach for testing climate change adaptation options using probabilistic climate scenarios and demand projections. An integrated modelling framework is developed which implements a new, gridded spatial weather generator, coupled with a rainfall-runoff model and water resource management simulation model. We use this to provide projections of the number of days and associated uncertainty that will require implementation of demand saving measures such as hose pipe bans and drought orders. Results, which are demonstrated for the Thames Basin, UK, indicate existing water supplies are sensitive to a changing climate and an increasing population, and that the frequency of severe demand saving measures are projected to increase. Considering both climate projections and population growth, the median number of drought order occurrences may increase 5-fold by the 2050s. The effectiveness of a range of demand management and supply options have been tested and shown to provide significant benefits in terms of reducing the number of demand saving days. A decrease in per capita demand of 3.75 % reduces the median frequency of drought order measures by 50 % by the 2020s. We found that increased supply arising from various adaptation options may compensate for increasingly variable flows; however, without reductions in overall demand for water resources such options will be insufficient on their own to adapt to uncertainties in the projected changes in climate and population. For example, a 30 % reduction in overall demand by 2050 has a greater impact on reducing the frequency of drought orders than any of the individual or combinations of supply options; hence, a portfolio of measures is required.


Author(s):  
Stefan Martens

Cyanobacteria are impacting widely on the daily activities of the general public. They are increasingly recognized as agents having possible adverse effects on water resources, on health of human and/or animals and therefore should be monitored and managed. To fill existing gaps this valuable handbook which is edited by three highly respected experts in the areas microbiology, algae biochemistry, metabolomics, and environmental science provide reviews, practical methods and standard operating procedures...


Sign in / Sign up

Export Citation Format

Share Document