Cervical End-Range Joint Motion Does Not Indicate Maximum Cervical Joint Motion In Healthy Adults. An Observational Study

2020 ◽  
Author(s):  
Victoria Blogg Andersen ◽  
Xu Wang ◽  
Mark De Zee ◽  
Lasse Riis Østergaard ◽  
Maciej Plocharski ◽  
...  

Abstract BackgroundIn clinical diagnosis, the largest motion associated with cervical range of motion is thought to be found at end-range and it is this perception that forms the basis for the interpretation of flexion/extension studies. There have however, been representative cases of joints producing their maximum motion before end-range, but this phenomenon is yet to be quantified. PurposeTo provide a quantitative assessment of the difference between maximum motion and end-range in healthy subjects. Secondarily to classify joints into type based on their motion and to assess the proportions of these joint types. Study designThis is an observational study. Subject sampleThirty three healthy subjects participated in the study. Outcome measuresMaximum motion, end-range motion and surplus motion in degrees were extracted from each cervical joint. MethodsThirty-three subjects performed one flexion and one extension motion excursion under video fluoroscopy. The motion excursions were divided into 10 percent epochs between the initial upright position and the end-range position, from which maximum motion, end-range and surplus motion were extracted. Surplus motion was then assessed in quartiles and joints were classified into type according to end-range. ResultsFor flexion 48.9% and for extension 47.2% of joints produced maximum motion before end-range (type Surplus). For flexion 45.9% and for extension 46.8% of joints produced maximum motion at end-range (type Classic) and 5.2% of joints in flexion and 6.1% of joints in extension concluded their motion anti-directionally (type Anti-directional). Mann-Whitney U tests produced significant results for C2/C3, C3/C4 and C4/C5 in flexion and C1/C2, C3/C4 and C6/C7 in extension when comparing end- range motion for type Classic and type Surplus. The average contributions to cervical range-of-motion (ROM) (C0 to C7) for flexion and extension were 60.23֯ and 67.86֯ for type Classic and 42.22֯ and 49.05֯ for type Surplus respectively. Thus, the average contribution to cervical ROM was larger for type Classic than for type Surplus. The average pro-directional surplus motion was 2.41֯ ± 2.12֯ with a range of range (0.07֯ -14.23֯) for flexion and 2.02֯ ± 1.70֯ with a range of 0.04°-6.97° for extension.ConclusionThis is the first study to categorise joints by type of motion. Type Surplus constituted approximately half of the joints analysed in this study. Therefore, end-range motion cannot be assumed to be a demonstration of a joint´s maximum motion.

2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Victoria Andersen ◽  
Xu Wang ◽  
Mark de Zee ◽  
Lasse Riis Østergaard ◽  
Maciej Plocharski ◽  
...  

Abstract Background In clinical diagnosis, the maximum motion of a cervical joint is thought to be found at the joint’s end-range and it is this perception that forms the basis for the interpretation of flexion/extension imaging studies. There have however, been representative cases of joints producing their maximum motion before end-range, but this phenomenon is yet to be quantified. Purpose To provide a quantitative assessment of the difference between maximum joint motion and joint end-range in healthy subjects. Secondarily to classify joints into type based on their motion and to assess the proportions of these joint types. Study design This is an observational study. Subject sample Thirty-three healthy subjects participated in the study. Outcome measures Maximum motion, end-range motion and surplus motion (the difference between maximum motion and end-range) in degrees were extracted from each cervical joint. Methods Thirty-three subjects performed one flexion and one extension motion excursion under video fluoroscopy. The motion excursions were divided into 10% epochs, from which maximum motion, end-range and surplus motion were extracted. Surplus motion was then assessed in quartiles and joints were classified into type according to end-range. Results For flexion 48.9% and for extension 47.2% of joints produced maximum motion before joint end-range (type S). For flexion 45.9% and for extension 46.8% of joints produced maximum motion at joint end-range (type C). For flexion 5.2% of joints and for extension 6.1% of joints concluded their motion anti-directionally (type A). Significant differences were found for C2/C3 (P = 0.000), C3/C4 (P = 0.001) and C4/C5 (P = 0.005) in flexion and C1/C2 (P = 0.004), C3/C4 (P = 0.013) and C6/C7 (P = 0.013) in extension when comparing the joint end- range of type C and type S. The average pro-directional (motion in the direction of neck motion) surplus motion was 2.41° ± 2.12° with a range of (0.07° -14.23°) for flexion and 2.02° ± 1.70° with a range of (0.04°-6.97°) for extension. Conclusion This is the first study to categorise joints by type of motion. It cannot be assumed that end-range is a demonstration of a joint’s maximum motion, as type S constituted approximately half of the joints analysed in this study.


2018 ◽  
Vol 27 (1) ◽  
pp. 24-29 ◽  
Author(s):  
Jae Guk Kim ◽  
Sung Hwan Bang ◽  
Gu Hyun Kang ◽  
Yong Soo Jang ◽  
Wonhee Kim ◽  
...  

Background: The cervical collar has been used as a common device for the initial stabilization of the cervical spine. Although many cervical collars are commercially available, there is no consensus on which offers the greatest protection, with studies showing considerable variations in their ability to restrict cervical range of motion. The use of the XCollar (Emegear, Carpinteria, CA) has been known to decrease the risk of spinal cord injury by minimizing potential cervical spinal distraction. We compared XCollar with two other cervical collars commonly used for adult patients with cervical spine injury to evaluate the difference in effectiveness between the three cervical collars to restrict cervical range of motion. Objectives: This study aimed to evaluate the difference between the three cervical collars in their ability to restrict cervical range of motion. Method: A total of 30 healthy university students aged 21–25 years participated in this study. Participants with any cervical disease and symptoms were excluded. Three cervical collars were tested: Philadelphia® Collar, Stifneck® Select™ Collar, and XCollar. A digital camera and an image-analysis technique were used to evaluate cervical range of motion during flexion, extension, bilateral bending and bilateral axial rotation. Cervical range of motion was evaluated in both the unbraced and braced condition. Results: XCollar permitted less than a mean of 10° of movement during flexion, extension, bilateral bending and bilateral axial rotation. This was less than the movement permitted by the other two cervical collars. Conclusion: XCollar presented superior cervical immobilization compared to the other two commonly used cervical collars in this study. Thus, when cervical collar is considered for an adult patient with cervical spine injury, XCollar might be one of the considerate options as a cervical immobilization device.


2021 ◽  
Vol 28 (2) ◽  
pp. 100-105
Author(s):  
Aiman Asyraf Ahmad Sukari ◽  
Sarwinder Singh ◽  
Muhammad Hafiz Bohari ◽  
Zamzuri Idris ◽  
Abdul Rahman Izaini Ghani ◽  
...  

Background: This paper outlines a summary of examination technique to identify the range of movement of the cervical spine. Due to common difficulties in obtaining tools for cervical examination within the district, a standardised compilation of easy-to-replicate examination techniques are provided using different tools. Methods: Bedside instruments that can be used includes a measuring tape, compass, goniometer, inclinometer and cervical range of motion (CROM) instrument. Discussion: Cervical flexion-extension, lateral flexion and rotation will be assessed with bedside instruments. This would aid in increasing accuracy and precision of objective measurement while conducting clinical examination to determine the cervical range of motion.


2020 ◽  
Vol 5 (3) ◽  
pp. 58
Author(s):  
Stefano Gobbo ◽  
Barbara Vendramin ◽  
Enrico Roma ◽  
Federica Duregon ◽  
Danilo Sales Bocalini ◽  
...  

The aim of this study was to evaluate the test–retest reliability of an integrated inertial sensor (IIS) for cervical range of motion assessment. An integrated inertial sensor was placed on the forehead center of thirty older adults (OA) and thirty younger adults (YA). Participants had to perform three continuous rotations, lateral bandings and flexion–extensions with their head. Test–retest reliability was assessed after 7 days. YA showed moderate to good agreement for rotation (0.54–0.82), lateral bending (0.74–0.8), and flexion–extension (0.74–0.81) movements and poor agreement for zero point (ZP). OA showed moderate to good agreement for rotation (0.65–0.86), good to excellent agreement in lateral bending (0.79–0.92), and poor to moderate agreement for flexion–extension (0.37–0.72). Zero point showed poor to moderate agreement. In conclusion, we can affirm that this IIS is a reliable device for cervical range of motion assessment in young and older adults; on the contrary, the ZP seems to be unreliable and the addition of an external reference point could help the subject to solve this shortcoming and reduce possible biases.


2020 ◽  
pp. 1-5
Author(s):  
Christanie Monreal ◽  
Lindsay Luinstra ◽  
Lindsay Larkins ◽  
James May

Context: Technological advances have given smartphones the capabilities of sensitive clinical measurement equipment at lesser cost and higher availability. The Clinometer is a smartphone application that can be used to measure the joint range of motion in a clinical setting, but psychometric properties of the tool’s use measuring cervical range of motion (CROM) are not established. Objectives: The purpose of this study was to examine the validity and intrarater reliability of the Clinometer application for the measurement of CROM (ie, flexion, extension, rotation, lateral flexion) and to determine the minimal detectable change and SEM. Design: A blinded, repeated-measures correlational design was employed. Setting: The study was conducted collaboratively between 2 athletic training clinics. Participants: A convenience sample of healthy adults ages 18–30 years were recruited. Participants with any history in the last 3 months of cervical or thoracic pathology, pain, or any musculoskeletal injury were excluded. Main Outcome Measures: Three repetitions of each motion were measured by a primary researcher with a goniometer. The same researcher then conducted 3 blinded measurements with the Clinometer application following the same procedure. A second researcher, blinded to the goniometer measurements, recorded the results. Thirty minutes later, testing was repeated with the application. The Pearson correlation was calculated to determine validity of the application compared with goniometry. Results: The measurements between devices had moderate to excellent concurrent validity, with the coefficients ranging between 0.544 and 0.888, P < .01. Test–retest reliability of the CROM measurement using the application was moderate to excellent, with intraclass correlation coefficients ranging between .774 and .928. Across all movements, the SEM ranged from 1.17° to 2.01°, and the minimal detectable change ranged from 1.18° to 2.02°. Conclusion: The Clinometer application is a valid and reliable instrument for measuring active CROM. Level of evidence: clinical measurement, level 1b.


Author(s):  
PJ Mulcahey ◽  
PT Knott ◽  
A Madiraju ◽  
N Haque ◽  
DS Haoson ◽  
...  

To develop a protocol for assessing spinal range of motion using an inertial sensor device. The baseline error of an inertial sensor was assessed using a bicycle wheel. Nineteen healthy subjects (12 females and 7 males, average age 18.2 ± 0.6 years) were then prospectively enrolled in a study to assess the reliability of an inertial sensor-based method for assessing spinal motion. Three raters each took three measurements of subjects’ flexion/extension, right and left bending, and right and left rotation. Afterwards, one trial from each set of measurements was excluded. Correlations and the ICC (3,1) were used to assess intra-rater reliability, and ICC (3,2) was used to assess inter-rater reliability of the protocol. The baseline error of the sensor was 1.45°. Correlation and ICC (3,1) values for the protocol all exceeded 0.888, indicating high intra-rater reliability. ICC (3,2) values for the protocol exceed 0.87, indicating high inter-rater reliability. Our study presents both a paradigm for assessing the baseline error of inertial sensors and a protocol for assessing motion of the spine using an inertial sensing device.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11228
Author(s):  
Germán Cánovas-Ambit ◽  
José A. García-Vidal ◽  
Rodrigo Martín-San Agustín ◽  
Aurelio Arenas Dalla-Vecchia ◽  
Mariana Sánchez-Barbadora ◽  
...  

Background Neck pain has a high annual incidence and decreases the cervical active range of motion (ROM). Clinicians use various methods to evaluate cervical range of motion (CROM) that some of them have also been proposed to give instant feedback. Accordingly, this study aimed to examine the validity and reliability of Veloflex (VF) to measure the CROM by comparison with the cervical range of motion (CROM) device, and to examine their test-retest reliability. Methods Thirty-eight healthy and 20 symptomatic participants were evaluated. Cervical flexion-extension, side bending, and rotations were tested in two sessions, first by the CROM and VF and in the second only with the VF. To evaluate the concurrent validity and agreement between CROM and VF, Pearson correlation coefficient (r) and Bland–Altmann plots were used. Reliability were evaluated using intra-class correlation (ICC), standard error of measurement (SEM) and minimal detectable change (MDC). Results CROM and VF showed excellent correlation for all movements (r > 0.960). Both devices provided small mean ‘bias’ (≤1.29%) in all movements regarding CROM measures. The intra-rater and inter-rater reliability of the VF was excellent (ICC > 0.98). SEMs ranging from 0.72% to 2.38% and the MDC ranging from 1.22° to 2.60° in all participants. The results support the validity and reliability of VF to measure CROM. For its use, with a basic training is enough to get reliable measurements.


Author(s):  
Mohammad Taghi Karimi ◽  
Sahar Khademi

Background: Patients who have rotator cuff arthropathy experience a limited range of motion (ROM) of the shoulder joint and experience problems in performing their daily activities; however, no evidence is available to suggest the exact ROM of the shoulder joint in this population. Therefore, this study sought to determine the degree of motion of the shoulder joint in three planes during different activities.Methods: Five subjects with rotator cuff injuries participated in this study. The motion of the shoulder joints on both the involved and normal sides was assessed by a motion analysis system while performing forward abduction (task 1), flexion (task 2), and forward flexion (task 3). The OpenSIM software program was used to determine the ROM of the shoulder joints on both sides. The difference between the ranges of motion was determined using a two-sample t-test. Results: The ROMs of the shoulder joint in task 1 were 35°±16.5°, 72.1°±2.6°, and 103.9°±28.7° degrees for flexion, abduction, and rotation, respectively, on the normal side and 28°±19.8°, 31°±31.56°, and 48°±33.5° on the involved side (p<0.05). There was no significant difference between the flexion/extension and rotation movements of the shoulder joint when performing task 1. However, the difference between flexion and rotation movements of the shoulder joints for the second task was significant (p˃0.05).Conclusions: Those with rotator cuff arthropathy have functional limitations due to muscle weakness and paralysis, especially during the vertical reaching task. However, although these individuals have decreased ROM for transverse reaching tasks, the reduction was not significant.


2012 ◽  
Vol 15 (03) ◽  
pp. 1250014
Author(s):  
Shashi Kumar C G ◽  
Nafeez Syed ◽  
Mohamed Sherif Sirajudeen ◽  
S Karthikbabu

Objective: To determine the position sense acuity across shoulder rotational range of motion in healthy subjects. Design: Cross-sectional study. Setting: Sports Medicine Department, Manipal hospital, Bangalore. Participants: Thirty healthy subjects with right hand dominance. Method: The ability of the subjects to replicate two criterion positions (mid-range and outer range) was examined in subjects' shoulder joints by using a standard goniometer. 50% and 90% range of total passive shoulder rotational range of motion were the two criterion positions. The difference between the test range of motion and repositioning range of motion indicates the position sense acuity. Results: There was a better position sense acuity in 90% range compared to that at 50% and was more in dominant shoulder than nondominant shoulder. Conclusion: Outer range shoulder rotational range of motion has minimum error in position sense acuity due to the tension in the peri articular structures of shoulder joint.


Sign in / Sign up

Export Citation Format

Share Document