scholarly journals Abundance of colistin-resistant Escherichia coli harbouring mcr-1 and extended-spectrum β-lactamase-producing E. coli co-harbouring blaCTX-M-55 or -65 with blaTEM isolates from chicken meat in Vietnam

Author(s):  
Tatsuya Nakayama ◽  
Le Thi Hien ◽  
Ngo Thanh Phong ◽  
Doan Nguyen Minh Tran ◽  
Oanh Thi Hoang Nguyen ◽  
...  

Abstract Although the spread of plasmid-mediated antibiotic-resistant bacteria is a public health concern, food contamination with plasmid-mediated antibiotic-resistant Escherichia coli has not been well investigated in Vietnam. The aim of this study was to describe the prevalence of colistin-resistant, carbapenem-resistant and endemic blaCTX−M in extended-spectrum β-lactamase (ESBL)-producing E. coli isolates. Colistin- and carbapenem-resistant ESBL-producing E. coli were isolated from chickens in Vietnam and Japan. The results showed that 52% and 93% of Vietnamese chicken was isolated with colistin-resistant and AmpC/ESBL-producing E. coli, respectively, while 52.7% of Japanese chickens were isolated with AmpC/ESBL-producing E. coli. Carbapenem-resistant E. coli has not been isolated in Vietnam or Japan. Genotyping revealed that colistin-resistant E. coli harboured mcr-1, and most of the AmpC/ESBL-related genes were blaCTX−M−55 and blaCTX−M−65 together with blaTEM in Vietnamese chickens, and blaCMY−2 in Japanese chickens. Multidrug resistance analysis showed that ESBL-producing E. coli isolates were more resistant to quinolones, streptomycin, and chloramphenicol compared with colistin-resistant E. coli isolates from Vietnam, suggesting selection in ESBL-producing E. coli for multiple antibiotic resistance genes. In conclusion, colistin-resistant E. coli was detected in about half of the chicken meat samples, the majority of which were found to harbour mcr-1. The high prevalence of ESBL-producing E. coli has remained constant across the last five years, and the predominant blaCTX−M for ESBL-producing E. coli was found to be blaCTX−M−55 or blaCTX−M−65, with the coexistence of blaTEM in Vietnam. Our results can be implemented in monitoring systems to combat the development of antimicrobial resistance.

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 850
Author(s):  
Shobha Giri ◽  
Vaishnavi Kudva ◽  
Kalidas Shetty ◽  
Veena Shetty

As the global urban populations increase with rapid migration from rural areas, ready-to-eat (RTE) street foods are posing food safety challenges where street foods are prepared with less structured food safety guidelines in small and roadside outlets. The increased presence of extended-spectrum-β-lactamase (ESBL) producing bacteria in street foods is a significant risk for human health because of its epidemiological significance. Escherichia coli and Klebsiella pneumoniae have become important and dangerous foodborne pathogens globally for their relevance to antibiotic resistance. The present study was undertaken to evaluate the potential burden of antibiotic-resistant E. coli and K. pneumoniae contaminating RTE street foods and to assess the microbiological quality of foods in a typical emerging and growing urban suburb of India where RTE street foods are rapidly establishing with public health implications. A total of 100 RTE food samples were collected of which, 22.88% were E. coli and 27.12% K. pneumoniae. The prevalence of ESBL-producing E. coli and K. pneumoniae was 25.42%, isolated mostly from chutneys, salads, paani puri, and chicken. Antimicrobial resistance was observed towards cefepime (72.9%), imipenem (55.9%), cefotaxime (52.5%), and meropenem (16.9%) with 86.44% of the isolates with MAR index above 0.22. Among β-lactamase encoding genes, blaTEM (40.68%) was the most prevalent followed by blaCTX (32.20%) and blaSHV (10.17%). blaNDM gene was detected in 20.34% of the isolates. This study indicated that contaminated RTE street foods present health risks to consumers and there is a high potential of transferring multi-drug-resistant bacteria from foods to humans and from person to person as pathogens or as commensal residents of the human gut leading to challenges for subsequent therapeutic treatments.


Author(s):  
Nahla Omer Eltai ◽  
Hadi M. Yassine ◽  
Sara H. Al-Hadidi ◽  
Tahra ElObied ◽  
Asmaa A. Al Thani ◽  
...  

The dissemination of antimicrobial resistance (AMR) bacteria has been associated with the inappropriate use of antibiotics in both humans and animals and with the consumption of food contaminated with resistant bacteria. In particular, the use of antibiotics as prophylactic and growth promotion purposes in food-producing animals has rendered many of the antibiotics ineffective. The increased global prevalence of AMR poses a significant threat to the safety of the world’s food supply. Objectives: This study aims at determining the prevalence of antibiotic-resistant Escherichia coli (E. coli) isolated from local and imported retail chicken meat in Qatar. Methodology: A total of 270 whole chicken carcasses were obtained from three different hypermarket stores in Qatar. A total of 216 E. coli were isolated and subjected to antibiotic susceptibility testing against 18 relevant antibiotics using disc diffusion and micro- dilution methods. Furthermore, extended-spectrum β-lactamase (ESBL) production was determined via a double-disc synergetic test. Isolates harboring colistin resistance were confirmed using multiplex-PCR and DNA sequencing. Results: Nearly 89% (192/216) of the isolates were resistant to at least one antibiotics. In general, isolates showed relatively higher resistance to sulfamethoxazole (62%), tetracycline (59.7%), ampicillin and trimethoprim (52.3%), ciprofloxacin (47.7%), cephalothin, and colistin (31.9%). On the other hand, less resistance was recorded against amoxicillin/clavulanic acid (6%), ceftriaxone (5.1%), nitrofurantoin (4.2%) and piperacillin/tazobactam (4.2%), cefepime (2.3%), meropenem (1.4%), ertapenem (0.9%), and amikacin (0.9%). Nine isolates (4.2%) were ESBL producers. Furthermore, 63.4% were multidrug-resistant (MDR). The percentage of MDR, ESBL producers, and colistin-resistant isolates was significantly higher among local isolates compared to imported chicken samples. Conclusion: We reported a remarkably high percentage of the antibiotic-resistant E. coli in chicken meat sold at retail in Qatar. The high percentage of MDR and colistin isolates is troublesome to the food safety of raw chicken meat and the potential of antibiotic resistance spread to public health. Our findings support the need for the implementation of one health approach to address the spread of antimicrobial resistance and the need for a collaborative solution.


Author(s):  
Asinamai Athliamai Bitrus ◽  
Peter Anjili Mshelia ◽  
Iliya Dauda Kwoji ◽  
Mohammed Dauda Goni ◽  
Saleh Mohammed Jajere

Antimicrobial resistance has gained global notoriety due to its public health concern, the emergence of multiple drug-resistant bacteria, and lack of new antimicrobials. Extended-spectrum beta-lactamase (ESBL)/ampicillin Class C (AmpC)- producing Escherichia coli and other zoonotic pathogens can be transmitted to humans from animals either through the food chain, direct contact or contamination of shared environments. There is a surge in the rate of resistance to medically important antibiotics such as carbapenem, ESBL, aminoglycosides, and fluoroquinolones among bacteria of zoonotic importance. Factors that may facilitate the occurrence, persistence and dissemination of ESBL/AmpC-Producing E. coli in humans and animal includes; 1). o ral administration of antimicrobials to humans primarily (by physician and health care providers) and secondarily to animals, 2). importation of parent stock and day-old chickens, 3). farm management practice and lack of water acidification in poultry, 4). contamination of feed, water and environment, 5). contamination of plants with feces of animals. Understanding these key factors will help reduce the level of resistance, thereby boosting the therapeutic effectiveness of antimicrobial agents in the treatment of animal and human infections. This review highlights the occurrence, risk factors, and public health importance of ESBL/AmpC-beta-lactamase producing E. coli isolated from livestock.


2019 ◽  
Vol 79 (8) ◽  
pp. 1550-1560 ◽  
Author(s):  
Anne-Laure Vivant ◽  
Catherine Boutin ◽  
Stéphanie Prost-Boucle ◽  
Sandrine Papias ◽  
Christine Ziebal ◽  
...  

Abstract Free water surface constructed wetlands (FWS CW) are efficient technologies to limit the transfer of antibiotic resistant bacteria (ARB) originating from urban effluents into the aquatic environment. However, the decrease in ARB from inflow to outflow through the FWS CW may be explained by their transfer from the water body to the sediment. To investigate the behavior of ARB in the sediment of a FWS CW, we inoculated three microcosms with two strains of extended-spectrum beta-lactamase producing Escherichia coli (ESBL E. coli) belonging to two genotypes. Microcosms were composed of two sediments collected at two locations of an FWS CW from which the strains were isolated. Phragmites were planted in one of the microcosms. The survival curves of the two strains were close regardless of the genotype and the type of sediment. After a rapid decline, both strains were able to survive at low level in the sediments for 50 days. Their fate was not affected by the presence of phragmites. Changes in the bla content and antibiotic resistance of the inoculated strains were observed after three weeks of incubation, indicating that FWS CW sediments are favorable environments for spread of antibiotic resistance genes and for the acquisition of new antibiotic resistance.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Kayode Fashae ◽  
Ines Engelmann ◽  
Stefan Monecke ◽  
Sascha D. Braun ◽  
Ralf Ehricht

Abstract Background Antimicrobial resistance (AMR) is an increasing global health concern reducing options for therapy of infections and also for perioperative prophylaxis. Many Enterobacteriaceae cannot be treated anymore with third generation cephalosporins (3GC) due to the production of certain 3GC hydrolysing enzymes (extended spectrum beta-lactamases, ESBLs). The role of animals as carriers and vectors of multi-resistant bacteria in different geographical regions is poorly understood. Therefore, we investigated the occurrence and molecular characteristics of ESBL-producing Escherichia coli (E. coli) in wild birds and slaughtered cattle in Ibadan, Nigeria. Cattle faecal samples (n = 250) and wild bird pooled faecal samples (cattle egrets, Bubulcus ibis, n = 28; white-faced whistling duck, Dendrocygna viduata, n = 24) were collected and cultured on cefotaxime-eosin methylene blue agar. Antimicrobial susceptibility was determined by agar diffusion assays and all 3GC resistant isolates were genotypically characterised for AMR genes, virulence associated genes (VAGs) and serotypes using DNA microarray-based assays. Results All 3GC resistant isolates were E. coli: cattle (n = 53), egrets (n = 87) and whistling duck (n = 4); cultured from 32/250 (12.8%), 26/28 (92.9%), 2/24(8.3%), cattle, egrets and whistling duck faecal samples, respectively. blaCTX-M gene family was prevalent; blaCTX-M15 (83.3%) predominated over blaCTX-M9 (11.8%). All were susceptible to carbapenems. The majority of isolates were resistant to at least one of the other tested antimicrobials; multidrug resistance was highest in the isolates recovered from egrets. The isolates harboured diverse repositories of other AMR genes (including strB and sul2), integrons (predominantly class 1) and VAGs. The isolates recovered from egrets harboured more AMR genes; eight were unique to these isolates including tetG, gepA, and floR. The prevalent VAGs included hemL and iss; while 14 (including sepA) were unique to certain animal isolates. E. coli serotypes O9:H9, O9:H30 and O9:H4 predominated. An identical phenotypic microarray profile was detected in three isolates from egrets and cattle, indicative of a clonal relationship amongst these isolates. Conclusion Wild birds and cattle harbour diverse ESBL-producing E. coli populations with potential of inter-species dissemination and virulence. Recommended guidelines to balance public health and habitat conservation should be implemented with continuous surveillance.


2020 ◽  
Author(s):  
Thang Nam Nguyen ◽  
Diep Thi Khong ◽  
Ha Viet Le ◽  
Hoa Thi Tran ◽  
Quang Ngoc Phan ◽  
...  

Abstract Objective: The spread of drug-resistant bacteria via food has contributed to the dissemination of resistant bacteria among humans. However, the status of food contamination with resistant bacteria, particularly the level of resistant bacteria in food, have not yet been well elucidated.Results: In this study, the abundance of colistin-resistant Escherichia coli in meat samples was quantified to understand the origin of the contamination of meat available in local Vietnamese markets. Fifteen samples each of chicken and pork meat purchased from local Vietnamese markets were assessed for the presence of colistin-resistant E. coli with the mobile colistin resistance gene mcr. The results showed that 40% (6/15) and 66% (10/15) of the pork and chicken meat samples, respectively, were contaminated with colistin-resistant E. coli. The median levels of colistin-resistant E. coli in the contaminated pork and chicken samples were 1.8 × 104 and 4.2 × 103 CFU/g, respectively. The results of phylogenetic analysis of isolates from a chicken meat sample showed that the contaminated colistin-resistant E. coli were a mix of multiple phylogenetical clones of bacteria that may have multiplied during sale. This is the first study to quantify the abundance of colistin-resistant E. coli in meat samples.


2020 ◽  
Author(s):  
Thang Nam Nguyen ◽  
Diep Thi Khong ◽  
Ha Viet Le ◽  
Hoa Thi Tran ◽  
Quang Ngoc Phan ◽  
...  

Abstract The spread of drug-resistant bacteria via food has contributed to the dissemination of resistant bacteria among humans. However, the status of food contamination with resistant bacteria, particularly the quantitative level of resistant bacteria in food, has not yet been well elucidated. In this study, the abundance of colistin-resistant Escherichia coli in meat samples was quantified to understand the origin of the contamination of meat available in local Vietnamese markets. Fifteen samples each of chicken and pork meat purchased from local Vietnamese markets were assessed for the presence of colistin-resistant E. coli with the mobile colistin resistance gene mcr. The results showed that 40% (6/15) and 66% (10/15) of the pork and chicken meat samples, respectively, were contaminated with colistin-resistant E. coli. The median quantitative levels of colistin-resistant E. coli in the contaminated pork and chicken samples were 1.8 × 104 and 4.2 × 103 CFU/g, respectively. The results of phylogenetic analysis of isolates from a chicken meat sample showed that the contaminated colistin-resistant E. coli were a mix of multiple phylogenetical clones of bacteria that may have multiplied during sale. This is the first study to quantify the abundance of colistin-resistant E. coli in meat samples.


2020 ◽  
Vol 8 (11) ◽  
pp. 1646
Author(s):  
Maria-Theresia Gekenidis ◽  
Serena Rigotti ◽  
Jörg Hummerjohann ◽  
Fiona Walsh ◽  
David Drissner

The number of environmental antibiotic-resistant bacteria (ARB) has increased dramatically since the start of antibiotic mass production for broad bacterial infection treatment in 1944. Nowadays, ARB and their resistance-determining genes (ARGs) are readily detected in all environments, including the human food chain. A highly relevant food group in this context is fresh produce, frequent raw consumption of which facilitates direct transfer of ARB and ARGs to the consumer. Here, we investigate the persistence of an extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) pEK499 and its clinically most important ARG (blaCTX-M-15), after introduction via irrigation water or manure into a lettuce-growing system. Culturable ESBL-producing E. coli persisted longest in soil and when introduced via manure (until 9 weeks after introduction), while being undetectable on lettuce beyond day 7. In contrast, qPCR detection of blaCTX-M-15 was much more frequent: introduction via water significantly increased blaCTX-M-15 on lettuce until week 4, as opposed to manure, which affected the soil in the long-term (9 weeks) while leading to blaCTX-M-15 detection on lettuce until day 7 only. Our findings demonstrate long-term persistence of undesired ARB and ARG after their introduction via both irrigation and amendment. Such an understanding of the persistence kinetics of an ESBL-producing E. coli and plasmid-encoded blaCTX-M-15 aids the determination of critical actions in order to mitigate their transfer to the consumer.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Md. Masudur Rahman ◽  
Asmaul Husna ◽  
Hatem A. Elshabrawy ◽  
Jahangir Alam ◽  
Nurjahan Yasmin Runa ◽  
...  

AbstractAntibiotic-resistant Escherichia coli (E. coli) are common in retail poultry products. In this study, we aimed to isolate and characterize multidrug resistant (MDR) E. coli in raw chicken meat samples collected from poultry shops in Sylhet division, Bangladesh, as well as to determine correlation between resistance phenotype and genotype. A total of 600 chicken meat swabs (divided equally between broiler and layer farms, n = 300 each) were collected and the isolates identified as E. coli (n = 381) were selected. Disc diffusion antimicrobial susceptibility assay showed resistance of these isolates to ampicillin, erythromycin, tetracycline, streptomycin, trimethoprim-sulfamethoxazole, chloramphenicol, and gentamicin. Polymerase chain reaction (PCR) identified several antibiotic resistance genes (ARGs) in our isolates. Among these ARGs, the prevalence of tetA (for tetracycline) was the highest (72.58%) in broiler chicken isolates, followed by sul1 (for sulfonamide; 44.16%), aadA1 (for streptomycin; 33.50%), ereA (for erythromycin; 27.41%), aac-3-IV (for gentamicin; 25.38%), and the two genes cmlA (24.87%) and catA1 (8.63%) for chloramphenicol. On the other hand, the respective prevalence in layer chicken isolates were 82.06%, 47.83%, 35.87%, 35.33%, 23.91%, 19.02%, and 5.43%. Furthermore, 49.23% of the isolates from broiler chicken were MDR, with the presence of multiple antibiotic resistance genes, including 3 (40.11%) and 4 (9.13%) genes. On the other hand, 51.09% of layer chicken E. coli isolates were MDR, with 3, 4 or 5 ARGs detected in 36.41%, 14.13%, and 0.54% of the isolates, respectively. We also found that 12.8% of broiler chicken E. coli isolates and 7.61% of layer chicken isolates carried genes coding for extended-spectrum SHV beta-lactamases. Lastly, we report the presence of the AmpC beta-lactamase producing gene (CITM) in 4.56% and 3.26% of broiler and layer chicken E. coli isolates, respectively. We found significant correlations between most of the antimicrobial resistant phenotypes and genotypes observed among the investigated E. coli isolates. Our findings highlight the need for the prudent use of antimicrobials in chickens to minimize the development of antibiotic-resistant bacterial strains.


2019 ◽  
Vol 366 (20) ◽  
Author(s):  
Prabhu Raj Joshi ◽  
Rapee Thummeepak ◽  
Udomluk Leungtongkam ◽  
Renukar Pooarlai ◽  
Saroj Paudel ◽  
...  

ABSTRACT The emergence and dissemination of colistin resistance among Gram-negative bacteria is a global problem. We initiated a surveillance of colistin-resistant and -susceptible Escherichia coli in raw meats from chicken in Nepal. A total of 180 meat samples were collected; from these, 60 E. coli strains were isolated (33.33%), of which 16 (26.66%) were colistin-resistant and harboured the mcr-1 gene. All isolates were characterised by antibiotic susceptibility testing, the presence of antibiotic resistance genes, phylogenetic analysis and plasmid replicon typing. Most of the colistin-resistant E. coli had the antibiotic resistant pattern CIP/CN/SXT/TE (43.75%). Coexistence of tet, qnr, sul and dfr genes was detected in both colistin-resistant and -susceptible E. coli. Most colistin-resistant E. coli strains belonged to phylogroup C, whereas 10% of isolates belonged to phylogroup D. Inc FIB was the dominant plasmid Inc type in the isolates. Dissemination of antibiotic-resistant E. coli in raw meats is a public health concern in Nepal and requires further investigation to ascertain the sources of contamination.


Sign in / Sign up

Export Citation Format

Share Document