scholarly journals Network Pharmacology Based Prediction of Active Ingredients and Targets of Chinese Herb She Xiang in Treating Facial Paralysis 

2020 ◽  
Author(s):  
Xiaoyan Li ◽  
Chuang Zhao ◽  
Jiamiao Wang ◽  
Lan Shen ◽  
Zhidan Liu

Abstract The traditional Chinese herb, She Xiang, has been found to accelerate the recovery of facial paralysis including Bell’s palsy by acupoint application in China. However, the underlining mechanism was not well known which has become an obstacle on the way to further development. In this study, we attempted to explore the pharmacology mechanism of She Xiang on facial paralysis treatment preliminarily by bioinformatics analysis. As a result, 59 active ingredients were identified in She Xiang by Traditional Chinese Medicine Integrated Database, such as 17-Beta-Estradiol, testosterone, and 2,6-Decamethylene Pyridine. Totally 837 genes were identified to be differently expressed in the blood sample of facial paralysis patients by RNA sequencing. Finally, 33 overlapped proteins were obtained overlapped with the prediction of comparative toxicogenomics database (CTD) and BATMAN. Proteins of interest were closely related with 406 GO BP and 4 pathways. The hub protein in PPI network contained FOS, JUN, POMC, and GPER1. Pharmacology network was constructed with 15 active components of She Xiang, 33 protein targets and 4 pathways. The docking model of Androst-4-Ene-3, 17-Dione (ASD) and FUS-JUN complexes (1FOS) was predicted and constructed. In conclusion, this work indicated testosterone as the effective component of She Xiang may advance the recovery of facial paralysis by targeting FUN, MAPK and cAMP signaling pathway; docking of ASD and 1FOS might play a critical role in facial paralysis treatment by She Xiang. Further work will be carried out in human or experimental animals to test and verify the predicted results.

2021 ◽  
Vol 50 (5) ◽  
pp. 1433-1444
Author(s):  
Tingting Wu ◽  
Lihu Zhang ◽  
Dongdong Li ◽  
Tao Wu ◽  
Yan Jiang ◽  
...  

In recent years, with the global environmental deterioration and air pollution, the incidence of bronchitis has increased year by year, and the sales of anti-bronchitis drugs are growing rapidly, mainly due to the long treatment cycle and the difficulty of curing. Developing available traditional Chinese medicines with significant curative effect against bronchitis would be a promising strategy; for instance, Ginkgo seeds, as the fruit of natural plant ginkgo, has been used in ancient times to cure coughs. However, the detailed mechanism of curing cough has not been shown yet. Investigate the mechanism of Ginkgo Semen in the treatment of bronchitis by establishing a series of molecular networks including active ingredients-targets, proteins interactions, biological functions, pathway, and biological processes of targets. In this study, the main active ingredients of Ginkgo seeds and the potential targets related to bronchitis could be obtained by retrieving corresponding database. The molecular docking study between active molecules and protein targets was performed by Glide 6.6. Subsequently, a total of forty potential targets were manually selected. Based on this, the ingredients-target network was constructed using Cytoscape software, as well as proteins interactions network combing with the String database. Finally, the molecular biological function, metabolic pathway, and biological processes of these forty targets were analyzed by Clue GO plug-in. The results indicated that these protein targets were closely related to lipid transport, positive regulation of DNA replication, cAMP metabolic pathway, and other processes, which played a vital role in the treatment of bronchitis by mediating interleukin 17, fluid shear stress and atherosclerosis, asthma, renin secretion, p53, and other signaling pathways. Among these targets, the two protein ALB (Albumin) and DHRS2 (Dehydrogenase 2) can interact with compounds more frequently, and the top three compounds ranked by the docking scores were amentoflavone, (+)-catechin-5-O-glucoside, and liquiritin, implying that these compounds might be used for the treatment of bronchitis. It is obvious that the pharmacological effect of Ginkgo seeds on bronchitis displayed a characteristic of multi-components, multi-targets, and multi-pathways. Nevertheless, the two protein targets and three compounds derived from Ginkgo seeds could be further used for the explanation for Ginkgo seeds in curing bronchitis. This research can provide a scientific basis for studying on the anti-bronchitis mechanism of Ginkgo seeds.


2020 ◽  
Author(s):  
Ying Li ◽  
Guhang Wei ◽  
Zhenkun Zhuang ◽  
Mingtai Chen ◽  
Changjian Yuan ◽  
...  

Abstract BackgroundCorydalis Rhizoma(CR) showed a high efficacy for coronary heart disease (CHD). However, the interaction between the active ingredients of CR and the targets of CHD has not been unequivocally explained in previous researches. To study the active components and potential targets of Corydalis Rhizoma and to determine the mechanism underlying the exact effect of Corydalis Rhizoma on coronary heart disease, a method of network pharmacology was used.Materials and MethodsThe active components of CR and targets corresponding to each component were scanned out from Traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP), and target genes of CHD were searched on GeneCards database and Online Mendelian Inheritance in Man(OMIM) database. The active components and common targets of CR and CHD were used to build the “CR-CHD” network through Cytoscape (version 3.2.1) software as well as protein-protein interaction(PPI) network on String database. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis was executed by clusterProfiler(version 3.8) and DOSE(version 3.6) package on R platform.Results49 active ingredients and 394 relevant targets of CR and the 7173 CHD-related genes were retrieved. 40 common genes were selected for subsequent analysis. Crucial biological processes and pathways were obtained and analyzed, including DNA-binding transcription activator activity, RNA polymerase II-specific, RNA polymerase II transcription factor binding, kinase regulator activity, ubiquitin-like protein ligase binding, fluid shear stress and atherosclerosis, TNF signaling pathway, apoptosis, MAPK signaling pathway and PI3K-Akt signaling pathway.ConclusionsOverall, CR could alleviate CHD through the mechanisms predicted by network pharmacology, laying the foundation for future development of new drugs from traditional Chinese medicine on CHD.


2020 ◽  
Author(s):  
Qinfang Zheng ◽  
Liangzi Fang ◽  
Xiaolong Huang ◽  
Ye Wang ◽  
Shuihan Zhang

Abstract BackgroundSeveral species of the medicinally valuable genus Lobelia (Campanulaceae) exhibit neuroprotection. While the neuroprotective mechanisms of some components (e.g. lobeline, lobelanine, and lobelanidine) belonging to the L. nicotianaefolia or L. inflata are extensively characterized, there remains the need to study and elucidate the mechanism of action of other species and their active components. In this work, we have studied the neuroprotective mechanism of the pharmacokinetically favorable active compounds of 17 Lobelia species.MethodsNetwork pharmacology approach and molecular modeling were employed. We have conducted drug-likeness evaluation, oral bioavailability prediction followed by the Gene Ontology (GO) terms and pathways enrichment analysis, protein-protein and protein-compound interaction network construction and analysis, and molecular docking studies. Five neurodegenerative diseases viz. Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, epilepsy, and Amyotrophic lateral sclerosis along with the common neuroprotection mechanism-associated genes were evaluated.ResultsWe revealed the neuroprotective mechanism of the active ingredients of Lobelia species. Our study strongly indicates that 12 unique active ingredients viz. luteolin, kaempferol, acacetin, chryseriol, norlobelanine, lobelanine, 2-[(2R,6S)-6-[(2R)-2-hydroxy-2-phenylethyl]-1-methylpiperidin-2-yl]-1-phenylethanone, hydroxygenkwanin, lobelanidine, quercetin, and diosmetin regulates 31 targets within multiple signaling pathways. The nitric oxide synthase, brain (NOS1), androgen receptor (ANDR), sodium- and chloride-dependent GABA transporter 1 (SC6A1), apoptosis regulator Bcl-2 (BCL2), RAC-alpha serine/threonine-protein kinase (AKT1), cellular tumor antigen p53, apoptosis regulator BAX, and tumor necrosis factor (TNFA) were identified as the majorly regulated genes. A majority of these target proteins act via several cancer-related pathways proven to have cross-talks with the pathogenesis of neurodegenerative diseases.ConclusionsThis study explains how the active ingredients of the Lobelia species exhibit their neuroprotective actions and provide a reference basis to investigate their pharmacological effects in detail.


2020 ◽  
Author(s):  
Mengke Sheng ◽  
Xing Liu ◽  
Qingsong Qu ◽  
Xiaowen Wu ◽  
Yuyao Liao ◽  
...  

Abstract Background: Chronic cough significantly affects human health and quality of life. Studies have shown that Sanao Decoction(SAD)can clinically treat chronic cough. To investigate its mechanisms, we used the method of network pharmacology to conduct research at the molecular level.Methods: The active ingredients and their targets were screened by pharmacokinetics parameters from the traditional Chinese medicine system pharmacology analysis platform (TCMSP). The relevant targets of chronic cough were obtained from two databases: GeneCards and DrugBank. Take the intersection to get potential targets of SAD to treat chronic cough and establish the component-target regulatory network by CytoScape3.7.2 and protein-protein interaction (PPI) network by STRING 1.0. The function of the target gene and related pathways were analyzed by the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) in the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The significant pathways and their relevant targets were obtained and the target-pathway network was established by CytoScape3.7.2. Finally, molecular docking of the core active components and relevant targets was performed.Results: A total of 98 active components, 113 targets were identified. The component-target and target-pathway network of SAD and PPI network were established. Enrichment analysis of DAVID indicated that 2062 terms were in biological processes, 77 in cellular components, 142 in molecular functions and 20 significant pathways. In addition, the molecular docking showed that quercetin and luteolin had a good combination with the corresponding targets.Conclusions: It indicates that the active compounds of SAD, such as quercetin, luteolin, may act on AKT1, MAPK1, RELA, EGFR, BCL2 and regulate PI3K-Akt signaling pathway, AGE-RAGE signaling pathway in diabetic complications and Fluid shear stress and atherosclerosis pathway to exert the effects of anti-inflammatory, anti-airway remodeling, anti-oxidant stress and repair airway damage to treat chronic cough.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Qiqiang Zhang ◽  
Qing Ye ◽  
Xiaohui Huang ◽  
Ajing Xu ◽  
Yan Liu ◽  
...  

Abstract Background Gandi capsule is a traditional Chinese herbal formula used to promote blood circulation and removing blood stasis in clinical. Our previous study has shown that it reduces proteinuria with routine treatment in diabetic nephrophy (DN), but its pharmacological action mechanism is still unknown. Methods To facilitate the identification of components, a component database of Gandi capsule and target database of DN were established by ourselves. The components absorbed in blood circle were identified in rat plasma after oral administration of Gandi capsule by UHPLC-QQQ-MS/MS. The potential targets were screened by using Libdock tolls in Discovery studio 3.0. Then Pathway and Network analyses were used to enrich the screened targets. The possible targets were verified by using a surface plasmon resonance (SPR) test and the molecular mechanism focusing these targets for treating DN was clarified by western blot. Results Six components in Gandi capsule were identified detected in rat plasma after oral administration by UHPLC-QQQ-MS/MS. After molecular docking analyses in KEGG and Discovery studio, four protein targets including HNF4A, HMGCR, JAK3, and SIRT1, were screened out, and proved as effective binding with baicalin, wogonoside by SPR. And the molecular mechanism was clarified that baicalin and wogonoside inhibit the effect of high glucose (HG)-induced decreased cell viability and podocin expression, and strengthen the activation p-AKT, p-PI3K, and p-AMPK. Conclusion Baicalin and wogonoside were screened out to be the active compounds in Gandi capsule and can ameliorate HG-induced podocyte damage by influencing the AMPK and PI3K-AKT signaling pathways by binding with HNF4A, HMGCR, JAK3, and SIRT1. Graphical abstract


2020 ◽  
Vol 15 (9) ◽  
pp. 1934578X2094721
Author(s):  
Yan Ren ◽  
Zheng-hao Yin ◽  
Jian-xing Dai ◽  
Zhuo Yang ◽  
Bin-bin Ye ◽  
...  

This study aimed at exploring the active components and mechanisms of Jinhua Qinggan granules (JQG) in the prevention and treatment of coronavirus disease 2019 (COVID-19) using network pharmacology and molecular docking technology. These efforts were accomplished by employing the holistic approach of traditional Chinese medicine (TCM) and considering the virus-host interaction consisting of viral characteristics, the entry pathway into the host, and the resulting immune response. The chemical constituents and molecular targets of the 12 herbs from JQG were obtained using the TCM Systems Pharmacology database and analysis platform. UniProt was used to search for genes corresponding to JQG protein targets and Cytoscape 3.7.2 to construct the component-target (gene) network. Database for Annotation, Visualization and Integrated Discovery was used to perform enrichment analysis of gene ontology functions and the Kyoto Encyclopedia of Genes and Genomes pathways to predict the mechanism of action. The components ranked high in the network, and the major active components of the principal medicines, based on published literature, were docked with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3CL hydrolase, SARS-CoV-2 spike glycoprotein (S protein), angiotensin conversion enzyme II (ACE2), and suppressor of cytokine signaling 1 (SOCS1). Visualization analysis demonstrated that the core active components of JQG had a strong affinity for SARS-CoV-2 3CL hydrolase, SARS-CoV-2 S protein, ACE2, and SOCS1. These data imply that the potential active components of JQG may act on multiple signaling pathways by binding to targets such as SARS-CoV-2 3CL hydrolase, S protein, ACE2, and SOCS1, thereby inhibiting virus replication and targeting cell binding, reducing host inflammation, and activating antiviral immunity to a certain extent.


2021 ◽  
Author(s):  
Zhi-Cong Ding ◽  
Fang-Fang Xu ◽  
Qi-Di Sun ◽  
Bin Li ◽  
Neng-Xing Liang ◽  
...  

Abstract Backgrounds: Post-stroke depression is the most common and serious neuropsychiatric complication occurring after cerebrovascular accidents, seriously endangering human health while also imposing a heavy burden on society. Even so, it is difficult to have drugs to contain the progression of the disease. It’s reported that Gan-Mai-Da-Zao decoction was effective to PSD, but it is unknown on its mechanism of action for PSD. In this study, we aimed to explore the possible mechanisms of action of Gan-Mai-Da-Zao decoction in the treatment of PSD using network pharmacology and molecular docking.Material and methods: We obtained the active components and their targets of all drugs from the public database TCMSP and published articles. Then, we collected the PSD-related targets from GeneCards and OMIM databases. Cytoscape 3.8.2 was applied to construct PPI and composite target disease networks. In parallel, the DAVID database was used to perform GO and KEGG enrichment analysis to obtain the biological processes involved in drug treatment diseases in vivo. Finally, molecular docking was used to verify the association between the main active ingredients and the targets.Results: The network pharmacological analysis of Gan-Mai-Da-Zao decoction for PSD identified 107 active ingredients with important biological effects, including quercetin, luteolin, kaempferol, naringenin, isorhamnetin, etc. A total of 203 potential targets for drug treatment of diseases were screened, including STAT3, JUN, TNF, TPT53, AKT1, EGFR, etc. They were found to be widely enriched in a series of signaling pathways such as TNF, HIF-1, and the Toll-Like receptor. Meanwhile, molecular docking analysis showed that the core active components were tightly bound to the core targets, further confirming their anti-PSD effects.Conclusion: This is a prospective study based on the integration and analysis of large data, using the technology of network pharmacology to explore the feasibility of Gan-Mai-Da-Zao decoction for the treatment of PSD, and successfully validated by molecular docking. It reflects the multi-component and multi-target characteristics of Chinese medicine, and more importantly, it also brings hope to the clinical treatment of PSD.


2020 ◽  
Author(s):  
Shujie Xia ◽  
Zhangfeng Zhong ◽  
Bizhen Gao ◽  
Chi Teng Vong ◽  
Jin Cai ◽  
...  

Abstract Background: Corona Virus Disease 2019 (COVID-19) is an unprecedented disaster for people around the world. Many studies have shown that traditional Chinese medicines(TCM) are indeed effective in treating COVID-19. However, it is a hard work to find the most effective combination laws among numerous herbs as well as its potential mechanisms. The purpose of this article is to explore the combination laws of traditional Chinses medicine(TCM) prescriptions and pick out the most important herbal pair for treating COVID-19 and analyze the active components and potential mechanisms. Methods: We first systematically sorted out the TCM prescriptions recommended by leading experts for treating COVID-19 and the specific herbs they contained in different stages of disease. Next, the association rule approach was employed to examine the distribution and combination laws among these TCM prescription, and then picked out the most important herbal pair. On this basis, we further investigated the active ingredients and potential targets in the selected herbal pair by a network pharmacology approach. Result: We obtained 32 association rules for herb combinations in the process of TCM treatment for COVID-19. It was found that the combination of Amygdalus Communis Vas(ACV) and Ephedra sinica Stapf (ESS) had the highest confidence degree and lift value as well as high support degree, which can be used in almost all stages of COVID-19, so ACV and ESS (AE) was selected as the most important herbal pair. There were 26 active ingredients and 44 potential targets, which may be relate to the herbal pair of AE against COVID-19. The main active ingredients of AE against COVID-19 are quercetin, kaempferol, luteolin and the potential important targets are Interleukin 6 (IL-6), Mitogen-activated Protein Kinase 1 (MAPK)1, MAPK8, Interleukin-1β (IL-1β), Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) p65 subunit (RELA) and so on. The protein-protein interaction (PPI) cluster demonstrated that IL-6 was the seed in the cluster, which plays an important role in connecting other nodes in the PPI network. The significant pathways mainly involved in tumor necrosis factor (TNF), Toll-like receptor (TLR), hypoxia-inducible factor-1 (HIF-1), nucleotide-binding oligomerization domain (NOD)-like receptor(NLRs). Conclusion: Amygdalus Communis Vas and Ephedra sinica Stapf was the most important herbal pair in the treatment of COVID-19. The main active ingredients of AE against COVID-19 were quercetin, kaempferol, luteolin and the important targets were IL-6,MAPK1, MAPK8, IL-1β, RELA and so on. AE may have therapeutic effects against COVID-19 by affecting the pathological processes such as inflammatory and immune responses, cell apoptosis, hypoxia damage and other pathological processes through multiple components, multiple targets and multiple pathways.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Gong Feipeng ◽  
Xie Luxin ◽  
Chen Beili ◽  
Yang Songhong ◽  
Wu Wenting ◽  
...  

Ziziphi Spinosae Semen (ZSS) is a common natural medicine used to treat insomnia, and to show clearly its method of action, we managed and did an in-depth discussion. Network pharmacology research is very suitable for the analysis of multiple components, multiple targets, and multiple pathways of Traditional Chinese Medicine (TCM). According to the relevant theory, we first carefully collected and screened the active ingredients in ZSS and received 11 active ingredients that may work. The targets going along with these active components were also strongly related to insomnia targets, 108 common genes were identified, and drug-compound-gene symbol-disease visualization network and protein-protein interaction network were constructed. Forty-eight core genes were identified by PPI analysis and subjected to GO functional analysis with KEGG pathway analysis. The results of GO analysis pointed that there were 998 gene ontology items for the treatment of insomnia, including terms of 892 biological processes, 47 cellular components, and 59 molecular functions. It mainly shows the coupling effect and transport mode of some proteins in the biological pathways of ZSS in the treatment of insomnia and explains the mechanism of action through the connection between the target and the cell biomembrane. KEGG enrichment analyzed 19 signaling pathways, which were collectively classified into seven categories. We have identified the potential pathways of ZSS against insomnia and obtained the regulatory relationship between core genes and pathways and know that the same target can be regulated by multiple components at the same time. The results of molecular docking also prove this conclusion. We sought to provide a new analytical approach to explore TCM treatments for diseases using network pharmacology analysis tools.


2020 ◽  
Author(s):  
Ying Li ◽  
Guhang Wei ◽  
Zhenkun Zhuang ◽  
Mingtai Chen ◽  
Haidan Lin ◽  
...  

Abstract Background. Corydalis Rhizoma(CR) showed a high efficacy for coronary heart disease (CHD). However, the interaction between the active ingredients of CR and the targets of CHD has not been unequivocally explained in previous researches. To study the active components and potential targets of Corydalis Rhizoma and to determine the mechanism underlying the exact effect of Corydalis Rhizoma on coronary heart disease, a method of network pharmacology was used. Materials and Methods. The active components of CR and targets corresponding to each component were scanned out from Traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP), and target genes of CHD were searched on GeneCards database and Online Mendelian Inheritance in Man(OMIM) database. The active components and common targets of CR and CHD were used to build the “CR-CHD” network through Cytoscape (version 3.2.1) software as well as protein-protein interaction(PPI) network on String database. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis was executed by clusterProfiler(version 3.8) and DOSE(version 3.6) package on R platform. Results. 49 active ingredients and 394 relevant targets of CR and the 7173 CHD-related genes were retrieved. 40 common genes were selected for subsequent analysis. Crucial biological processes and pathways were obtained and analyzed, including DNA-binding transcription activator activity, RNA polymerase II-specific, RNA polymerase II transcription factor binding, kinase regulator activity, ubiquitin-like protein ligase binding, fluid shear stress and atherosclerosis, TNF signaling pathway, apoptosis, MAPK signaling pathway and PI3K-Akt signaling pathway. Conclusions. Overall, CR could alleviate CHD through the mechanisms predicted by network pharmacology, laying the foundation for future development of new drugs from traditional Chinese medicine on CHD.


Sign in / Sign up

Export Citation Format

Share Document