scholarly journals Anthropogenic Land Use/Cover Change Detection And Its Impacts On Hydrological Responses of Genale Catchment, Ethiopia

Author(s):  
Tufa Feyissa Negewo ◽  
Arup Kumar Sarma

Abstract Change in land use land-cover (LULC) is a paramount dynamic present-day challenging landscape process capable of altering the hydrological responses in the catchment. As the land use planners require updated and high-resolution land resources information, understanding land cover change-induced status due to anthropogenic activities is significant. In this study, multitemporal cloud-free satellite imageries for periods (1990, 2002, and 2013) were used to quantify the spatiotemporal dynamics of land-use change detection and examine the effect on hydrological response using Geographical Information System (GIS) and Soil and Water Assessment Tool (SWAT) model in the Genale watershed, Ethiopia. The model performance was evaluated through sensitivity, uncertainty analysis, calibration, and validation process. The analysis of LULC change patterns for the area under study over 24 years showed that most parts of the green forest, barren land, and range shrubs were changed into agriculture, built up, wetlands, and water body with an increase of agriculture by 60%, built up 68%, pasture 37%, range shrubs 9%, and water body 57% over (1990 to 2013), which increased surface runoff, water yield, and sediment yield in the catchment. Significant changes in hydrological elements were observed at the sub-basins scale, mainly associated with the uneven spatial distribution of LULC changes compared to the whole watershed. The impacts of individual LULC change on hydrological response show a good correlation matrix. The regional government needs to modify land development policies and sustainable plans for examining LULC change detection using satellite imagery to avoid illegal land expansion activities.

Land ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 916
Author(s):  
Urgessa Kenea ◽  
Dereje Adeba ◽  
Motuma Shiferaw Regasa ◽  
Michael Nones

Land use land cover (LULC) changes are highly pronounced in African countries, as they are characterized by an agriculture-based economy and a rapidly growing population. Understanding how land use/cover changes (LULCC) influence watershed hydrology will enable local governments and policymakers to formulate and implement effective and appropriate response strategies to minimize the undesirable effects of future land use/cover change or modification and sustain the local socio-economic situation. The hydrological response of the Ethiopia Fincha’a watershed to LULCC that happened during 25 years was investigated, comparing the situation in three reference years: 1994, 2004, and 2018. The information was derived from Landsat sensors, respectively Landsat 5 TM, Landsat 7 ETM, and Landsat 8 OLI/TIRS. The various LULC classes were derived via ArcGIS using a supervised classification system, and the accuracy assessment was done using confusion matrixes. For all the years investigated, the overall accuracies and the kappa coefficients were higher than 80%, with 2018 as the more accurate year. The analysis of LULCC revealed that forest decreased by 20.0% between the years 1994–2004, and it decreased by 11.8% in the following period 2004–2018. Such decline in areas covered by forest is correlated to an expansion of cultivated land by 16.4% and 10.81%, respectively. After having evaluated the LULCC at the basin scale, the watershed was divided into 18 sub-watersheds, which contained 176 hydrologic response units (HRUs), having a specific LULC. Accounting for such a detailed subdivision of the Fincha’a watershed, the SWAT model was firstly calibrated and validated on past data, and then applied to infer information on the hydrological response of each HRU on LULCC. The modelling results pointed out a general increase of average water flow, both during dry and wet periods, as a consequence of a shift of land coverage from forest and grass towards settlements and build-up areas. The present analysis pointed out the need of accounting for past and future LULCC in modelling the hydrological responses of rivers at the watershed scale.


Author(s):  
M. Kaur ◽  
S. Singh ◽  
V. K. Verma ◽  
B. Pateriya

Morphometric analysis is the measurement and mathematical analysis of the landforms. The delineation of drainage system is of utmost importance in understanding hydrological system of an area, water resource management and it's planning in an effective manner. Morphometric analysis and land use change detection of two sub-watersheds namely Kukar Suha and Ratewal of district Shahid Bhagat Singh Nagar, Punjab, India was carried out for quantitative description of drainage and characterisation. The stream order, stream number, stream length, mean stream length, and other morphometric analysis like bifurcation ratio, drainage density, texture, relief ratio, ruggedness number etc. were measured. The drainage pattern of Kukar Suha and Ratewal is mainly dendritic. The agriculture and settlements came up along the drainage network causes the pattern disturbance in the watershed. The study was undertaken to spotlight the morphometric parameters, their impact on the basin and the land use land cover changes occurred over the period of time. Morphometric parameters such as linear aspect, areal aspect and relief aspect of the watershed are computed. The land use/land cover change was extracted from LISS IV Mx + Cartosat1 PAN data. ASTER data is used to prepare DEM (digital elevation model) and geographical information system (GIS) was used to evaluate various morphometric parameters in ArcGIS10 software.


2017 ◽  
Vol 12 (3) ◽  
pp. 678-684
Author(s):  
Jagriti Tiwari ◽  
S.K. Sharma ◽  
R.J. Patil

The spatial analysis of land use and land cover (LULC) dynamics is necessary for sustainable utilization and management of the land resources of an area. Remote sensing along with Geographical Information System emerged as an effective technique for mapping the LU/LC categories of an area in an efficient and cost-effective manner. The present study was conducted in Banjar river watershed located in Balaghat and Mandla district of Madhya Pradesh, India. The Normalized Difference Vegetation Index (NDVI) approach was adopted for LU/LC classification of study area. The Landsat-8 satellite data of year 2013 was selected for the classification purpose. The NDVI values were generated in ERDAS Imagine 2011 software and LU/LC map was prepared in ARC GIS environment. On the basis of NDVI values five LU/LC classes were recognized in the study area namely river & water body, waste land & habitation, forest, agriculture/other vegetation, open land/fallow land/barren land. The forest cover was found to be highly distributed in the study area with an extent of 115811 ha and least area was found to be covered under river and water body (4057.28 ha). This research work will be helpful for the policy makers for proper formulation and implementation of watershed developmental plans.


Land ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 136 ◽  
Author(s):  
Sekela Twisa ◽  
Manfred F. Buchroithner

Anthropogenic activities have substantially changed natural landscapes, especially in regions which are extremely affected by population growth and climate change such as East African countries. Understanding the patterns of land-use and land-cover (LULC) change is important for efficient environmental management, including effective water management practice. Using remote sensing techniques and geographic information systems (GIS), this study focused on changes in LULC patterns of the upstream and downstream Wami River Basin over 16 years. Multitemporal satellite imagery of the Landsat series was used to map LULC changes and was divided into three stages (2000–2006, 2006–2011, and 2011–2016). The results for the change-detection analysis and the change matrix table from 2000 to 2016 show the extent of LULC changes occurring in different LULC classes, while most of the grassland, bushland, and woodland were intensively changed to cultivated land both upstream and downstream. These changes indicate that the increase of cultivated land was the result of population growth, especially downstream, while the primary socioeconomic activity remains agriculture both upstream and downstream. In general, net gain and net loss were observed downstream, which indicate that it was more affected compared to upstream. Hence, proper management of the basin, including land use planning, is required to avoid resources-use conflict between upstream and downstream users.


2018 ◽  
Vol 7 (3.14) ◽  
pp. 12 ◽  
Author(s):  
Mohd Khairul Amri Kamarudin ◽  
Kabir Abdulkadir Gidado ◽  
Mohd Ekhwan Toriman ◽  
Hafizan Juahir ◽  
Roslan Umar ◽  
...  

Geographical information system (GIS) techniques and Remote Sensing (RS) data are fundamental in the study of land use (LU) and land cover (LC) changes and classification. The aim of this study is to map and classify the LU and LC change of Lake Kenyir Basin within 40 years’ period (1976 to 2016). Multi-temporal Landsat images used are MSS 1976, 1989, ETM+ 2001 and OLI 8 2016. Supervised Classification on Maximum Likelihood Algorithm method was used in ArcGIS 10.3. The result shows three classes of LU and LC via vegetation, water body and built up area. Vegetation, which is the dominant LC found to be 100%, 88.83%, 86.15%, 81.91% in 1976, 1989, 2001 and 2016 respectively. While water body accounts for 0%, 11.17%, 12.36% and 13.62% in the years 1976, 1989, 2001 and 2016 respectively and built-up area 1.49% and 4.47 in 2001 and 2016 respectively. The predominant LC changes in the study are the water body and vegetation, the earlier increasing rapidly at the expense of the later. Therefore, proper monitoring, policies that integrate conservation of the environment are strongly recommended. 


2021 ◽  
Vol 13 (8) ◽  
pp. 4092
Author(s):  
Jamila Ngondo ◽  
Joseph Mango ◽  
Ruiqing Liu ◽  
Joel Nobert ◽  
Alfonse Dubi ◽  
...  

Evaluation of river basins requires land-use and land-cover (LULC) change detection to determine hydrological and ecological conditions for sustainable use of their resources. This study assessed LULC changes over 28 years (1990–2018) in the Wami–Ruvu Basin, located in Tanzania, Africa. Six pairs of images acquired using Landsat 5 TM and 8 OLI sensors in 1990 and 2018, respectively, were mosaicked into a single composite image of the basin. A supervised classification using the Neural Network classifier and training data was used to create LULC maps for 1990 and 2018, and targeted the following eight classes of agriculture, forest, grassland, bushland, built-up, bare soil, water, and wetland. The results show that over the past three decades, water and wetland areas have decreased by 0.3%, forest areas by 15.4%, and grassland by 6.7%, while agricultural, bushland, bare soil, and the built-up areas have increased by 11.6%, 8.2%, 1.6%, and 0.8%, respectively. LULC transformations were assessed with water discharge, precipitation, and temperature, and the population from 1990 to 2018. The results revealed decreases in precipitation, water discharge by 4130 m3, temperature rise by 1 °C, and an increase in population from 5.4 to 10 million. For proper management of water-resources, we propose three strategies for water-use efficiency-techniques, a review legal frameworks, and time-based LULC monitoring. This study provides a reference for water resources sustainability for other countries with basins threatened by LULC changes.


2017 ◽  
Vol 12 (1) ◽  
pp. 157-164 ◽  
Author(s):  
Jagriti Tiwari ◽  
S.K. Sharma ◽  
R.J Patil

Land use and land cover of a region is one of the prime concerns in current strategies for the evaluationof the watersheds and development of decision making policies. An uncertain increase in the population of the country along with the increasing demands has imposed an immense pressure on the land threatening the sustainability of the natural resources especially in the developing countries like India. The study was carried out to detect the land use and land cover changes observed in the Banjar River watershed lies in between Balaghat and Mandla districts of Madhya Pradesh, India using the multi spectral satellite dataset for two different years i.e. 2009 & 2013. The supervised classification was done in ERDAS IMAGINE software. The images of the study area was classified into seven classes namely, river, water body, waste land, habitation, forest, agriculture/other vegetation, open land/fallow land/barren land. The result indicates that during the last five years, forest, water body, waste land and open land/fallow land/barren has been increased by 2.26%, 0.55%, 0.23% and 0.48% respectively and the river, habitation and agriculture/other vegetation has been decreased by 0.26%, 0.04%, and 3.22% respectively. Accuracy assessment was also performed in this study to determine the quality of land use/cover map and overall accuracy was found 89.70% for 2009 and 91.91% for 2013.Present study emphasizes on digital change detection techniques for recognizing temporal changes in land use/land cover of the watershed. Outcomes of this study indicate need of implementing conservation and management practices for the socioeconomic development.


2020 ◽  
Vol 12 (7) ◽  
pp. 1057 ◽  
Author(s):  
Frank Thonfeld ◽  
Stefanie Steinbach ◽  
Javier Muro ◽  
Fridah Kirimi

Information about land use/land cover (LULC) and their changes is useful for different stakeholders to assess future pathways of sustainable land use for food production as well as for nature conservation. In this study, we assess LULC changes in the Kilombero catchment in Tanzania, an important area of recent development in East Africa. LULC change is assessed in two ways: first, post-classification comparison (PCC) which allows us to directly assess changes from one LULC class to another, and second, spectral change detection. We perform LULC classification by applying random forests (RF) on sets of multitemporal metrics that account for seasonal within-class dynamics. For the spectral change detection, we make use of the robust change vector analysis (RCVA) and determine those changes that do not necessarily lead to another class. The combination of the two approaches enables us to distinguish areas that show (a) only PCC changes, (b) only spectral changes that do not affect the classification of a pixel, (c) both types of change, or (d) no changes at all. Our results reveal that only one-quarter of the catchment has not experienced any change. One-third shows both, spectral changes and LULC conversion. Changes detected with both methods predominantly occur in two major regions, one in the West of the catchment, one in the Kilombero floodplain. Both regions are important areas of food production and economic development in Tanzania. The Kilombero floodplain is a Ramsar protected area, half of which was converted to agricultural land in the past decades. Therefore, LULC monitoring is required to support sustainable land management. Relatively poor classification performances revealed several challenges during the classification process. The combined approach of PCC and RCVA allows us to detect spatial patterns of LULC change at distinct dimensions and intensities. With the assessment of additional classifier output, namely class-specific per-pixel classification probabilities and derived parameters, we account for classification uncertainty across space. We overlay the LULC change results and the spatial assessment of classification reliability to provide a thorough picture of the LULC changes taking place in the Kilombero catchment.


2020 ◽  
Vol 12 (9) ◽  
pp. 3747 ◽  
Author(s):  
Gebdang B. Ruben ◽  
Ke Zhang ◽  
Zengchuan Dong ◽  
Jun Xia

Understanding the rate and process of land-use/land-cover (LULC) change in a watershed is essential for managing natural resources and achieving sustainable development. Therefore, this study aims to analyze historical LULC change from 1980 to 2010 and project future changes in 2030, 2060, and 2090 in the Guanting Reservoir Basin (GRB), China, a critical water-supplying watershed for China’s capital Beijing, through scenario-based simulations. Two LULC scenarios, ‘business-as-usual’ and ‘governance’ (Gov), were projected using the Cellular Automata-Markov (CA–Markov) model. Historical LULC trend analysis shows that built-up land increased from 2.6% in 1980 to 5.26% in 2010, while cropland, grassland, and water body decreased. LULC conversion analysis indicates that, in general, grassland, cropland, and woodland were converted to built-up area from 1980 to 2010. The BAU scenario projects a dramatic increase in built-up area, rising from 2296.98 km2 (5.26%) in 2010 to 11,757.35 km2 (26.93%) in 2090 at the expense of cropland and grassland areas. Conversely, the Gov scenario predicts an increase in water body, woodland, and grassland, encouraging sustainable development. Overall, these results provide useful inputs to the LULC planners and water resources managers to elaborate on eco-friendly policies and regulations for GRB.


Sign in / Sign up

Export Citation Format

Share Document