scholarly journals Favipiravir and Ivermectin Showed in Vitro Synergistic Antiviral Activity against SARS-CoV-2

Author(s):  
Kunlakanya Jitobaom ◽  
Chompunuch Boonarkart ◽  
Suwimon Manopwisedjaroen ◽  
Nuntaya Punyadee ◽  
Suparerk Borwornpinyo ◽  
...  

Abstract Despite the urgent need for effective antivirals against SARS-CoV-2 to mitigate the catastrophic impact of the COVID-19 pandemic, there are still no proven effective and widely available antivirals for COVID-19 treatment. Favipiravir and Ivermectin are among common repurposed drugs, which have been provisionally used in some countries. There have been clinical trials with mixed results, and therefore, it is still inconclusive whether they are effective or should be dismissed. It is plausible that the lack of clear-cut clinical benefits was due to the finding of only marginal levels of in vivo antiviral activity. An obvious way to improve the activity of antivirals is to use them in synergistic combinations. Here we show that Favipiravir and Ivermectin had the synergistic effects against SARS-CoV-2 in Vero cells. The combination may provide better efficacy in COVID-19 treatment. In addition, we found that Favipiravir had an additive effect with Niclosamide, another repurposed anti-parasitic drug with anti-SARS-CoV-2 activity. However, the anti-SARS-CoV-2 activity of Favipiravir was drastically reduced when tested in Calu-3 cells. This suggested that this cell type might not be able to metabolize Favipiravir into its active form, and that this deficiency in some cell types may affect in vivo efficacy of this drug.

Blood ◽  
2012 ◽  
Vol 119 (2) ◽  
pp. 573-582 ◽  
Author(s):  
Roland Csépányi-Kömi ◽  
Gábor Sirokmány ◽  
Miklós Geiszt ◽  
Erzsébet Ligeti

Members of the Rac/Rho family of small GTPases play an essential role in phagocytic cells in organization of the actin cytoskeleton and production of toxic oxygen compounds. GTPase-activating proteins (GAPs) decrease the amount of the GTP-bound active form of small GTPases, and contribute to the control of biologic signals. The number of potential Rac/RhoGAPs largely exceeds the number of Rac/Rho GTPases and the expression profile, and their specific role in different cell types is largely unknown. In this study, we report for the first time the properties of full-length ARHGAP25 protein, and show that it is specifically expressed in hematopoietic cells, and acts as a RacGAP both in vitro and in vivo. By silencing and overexpressing the protein in neutrophil model cell lines (PLB-985 and CosPhoxFcγR, respectively) and in primary macrophages, we demonstrate that ARHGAP25 is a negative regulator of phagocytosis acting probably via modulation of the actin cytoskeleton.


2011 ◽  
Vol 55 (4) ◽  
pp. 1366-1376 ◽  
Author(s):  
Christian Callebaut ◽  
Kirsten Stray ◽  
Luong Tsai ◽  
Matt Williams ◽  
Zheng-Yu Yang ◽  
...  

ABSTRACTGS-8374 is a novel bis-tetrahydrofuran HIV-1 protease (PR) inhibitor (PI) with a unique diethylphosphonate moiety. It was selected from a series of analogs containing various di(alkyl)phosphonate substitutions connected via a linker to theparaposition of a P-1 phenyl ring. GS-8374 inhibits HIV-1 PR with high potency (Ki= 8.1 pM) and with no known effect on host proteases. Kinetic and thermodynamic analysis of GS-8374 binding to PR demonstrated an extremely slow off rate for the inhibitor and favorable contributions of both the enthalpic and entropic components to the total free binding energy. GS-8374 showed potent antiretroviral activity in T-cell lines, primary CD4+T cells (50% effective concentration [EC50] = 3.4 to 11.5 nM), and macrophages (EC50= 25.5 nM) and exhibited low cytotoxicity in multiple human cell types. The antiviral potency of GS-8374 was only moderately affected by human serum protein binding, and its combination with multiple approved antiretrovirals showed synergistic effects. When it was tested in a PhenoSense assay against a panel of 24 patient-derived viruses with high-level PI resistance, GS-8374 showed lower mean EC50s and lower fold resistance than any of the clinically approved PIs. Similar to other PIs,in vitrohepatic microsomal metabolism of GS-8374 was efficiently blocked by ritonavir, suggesting a potential for effective pharmacokinetic boostingin vivo. In summary, results from this broadin vitropharmacological profiling indicate that GS-8374 is a promising candidate to be further assessed as a new antiretroviral agent with potential for clinical efficacy in both treatment-naïve and -experienced patients.


Endocrinology ◽  
2021 ◽  
Author(s):  
Malak El Sabeh ◽  
Subbroto Kumar Saha ◽  
Sadia Afrin ◽  
Mostafa A Borahay

Abstract The Wnt/β-catenin pathway is upregulated in uterine leiomyomas, the most common benign tumors in the female reproductive tract. Simvastatin is an anti-hyperlipidemic drug, and previous in vitro and in vivo reports showed it may have therapeutic effects in treating leiomyomas. The objective of this study is to examine the effects of simvastatin on the Wnt/β-catenin signaling pathway in leiomyoma. We treated primary and immortalized human leiomyoma cells with simvastatin and examined its effects using RT-qPCR, Western Blotting, and immunocytochemistry. We also examined the effects using human leiomyoma tissues from an ongoing, randomized controlled trial where women with symptomatic leiomyoma received simvastatin (40mg) or placebo for 3 months prior to their surgery. The results of this study reveal that simvastatin significantly reduced the expression of Wnt4 and its co-receptor LRP5. After simvastatin treatment, levels of total β-catenin and its active form, non-phosphorylated β-catenin, were reduced in both cell types. Additionally, simvastatin reduced the expression of Wnt4 and total β-catenin, as well as non-phosphorylated β-catenin protein expression in response to estrogen and progesterone. Simvastatin also inhibited the expression of c-Myc, a downstream target of the Wnt/β-catenin pathway. The effect of simvastatin on non-phosphorylated-β-catenin, the key regulator of the Wnt/β-catenin pathway, was recapitulated in human leiomyoma tissue. These results suggest that simvastatin may have a beneficial effect on uterine leiomyoma through suppressing the overactive Wnt/β-catenin pathway.


2020 ◽  
Author(s):  
Juhee Son ◽  
Shimeng Huang ◽  
Qiru Zeng ◽  
Traci L. Bricker ◽  
James Brett Case ◽  
...  

AbstractPathogenic coronaviruses represent a major threat to global public health. Here, using a recombinant reporter virus-based compound screening approach, we identified several small-molecule inhibitors that potently block the replication of the newly emerged severe acute respiratory syndrome virus 2 (SARS-CoV-2). Two compounds, nitazoxanide and JIB-04 inhibited SARS-CoV-2 replication in Vero E6 cells with an EC50 of 4.90 μM and 0.69 μM, respectively, with specificity indices of greater than 150. Both inhibitors had in vitro antiviral activity in multiple cell types against some DNA and RNA viruses, including porcine transmissible gastroenteritis virus. In an in vivo porcine model of coronavirus infection, administration of JIB-04 reduced virus infection and associated tissue pathology, which resulted in improved body weight gain and survival. These results highlight the potential utility of nitazoxanide and JIB-04 as antiviral agents against SARS-CoV-2 and other viral pathogens.


Author(s):  
Nilima Dinesh Kumar ◽  
Bram M. ter Ellen ◽  
Ellen M. Bouma ◽  
Berit Troost ◽  
Denise P. I. van de Pol ◽  
...  

Antiviral therapies are urgently needed to treat and limit the development of severe COVID-19 disease. Ivermectin, a broad-spectrum anti-parasitic agent, has been shown to have anti-SARS-CoV-2 activity in Vero cells at a concentration of 5 μM. These limited in vitro results triggered the investigation of ivermectin as a treatment option to alleviate COVID-19 disease. In April 2021, the World Health Organization stated, however, the following: “the current evidence on the use of ivermectin to treat COVID-19 patients is inconclusive”. It is speculated that the in vivo concentration of ivermectin is too low to exert a strong antiviral effect. Here, we performed a head-to head comparison of the antiviral activity of ivermectin and the structurally related, but metabolically more stable, moxidectin in multiple in vitro models of SARS-CoV-2 infection, including physiologically relevant human respiratory epithelial cells. Both moxidectin and ivermectin exhibited antiviral activity in Vero E6 cells. Subsequent experiments revealed that the compounds predominantly act on a step after virus cell entry. Surprisingly, however, in human airway-derived cell models, moxidectin and ivermectin failed to inhibit SARS-CoV-2 infection, even at a concentration of 10 μM. These disappointing results call for a word of caution in the interpretation of anti-SARS-CoV-2 activity of drugs solely based on Vero cells. Altogether, these findings suggest that, even by using a high-dose regimen of ivermectin or switching to another drug in the same class are unlikely to be useful for treatment against SARS-CoV-2 in humans.


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (11) ◽  
pp. 50-55
Author(s):  
S. T Tharakan ◽  
◽  
P. P. Binitha ◽  
R. Kuttan ◽  
G. Kuttan

NCV I and AC II are the two herbal immunomodulatory preparations being used in our centre for the treatment of acquired immunodeficiency syndrome (AIDS) for the past 20 years. The objective of this study is to check whether these drugs possess any antiviral activity in vitro and in vivo. In vitro antiviral activity was determined using Vero cells against Poliovirus. In vivo antiviral activity was determined in chick and duck embryonated eggs using New Castle Disease Virus (NDV), Egg Drop Syndrome (EDS) virus and also in NDV vaccinated chicks. NCV I and AC II decreased growth of poliovirus in culture. When the virus-inoculated Vero cells were treated with NCV I, the viral growth was inhibited by 59.87% and with AC II it was inhibited by 70.06%. When the chick embryos were treated with these viruses, there was no immediate lethality for 5 days but the haemagglutination titre (HA) was found to be significantly increased indicating an increase in viral load. The haemagglutination titre for NDV alone was found to be 1024 against normal untreated value of 128. In EDS treated duck eggs HA titre was found to be 4096. These titres were reduced to 4 in NCV I and 8 in AC II treated duck embryos. NCV I and AC II were also found to decrease the HA titre in chicks treated with NDV. These studies indicated the effectiveness of NCV I and AC II in HIV could be partially due to its antiviral activity against human immunodeficiency virus.


2001 ◽  
Vol 183 (14) ◽  
pp. 4235-4243 ◽  
Author(s):  
Gabriel J. McCool ◽  
Maura C. Cannon

ABSTRACT Polyhydroxyalkanoic acids (PHAs) are a class of polyesters stored in inclusion bodies and found in many bacteria and in some archaea. The terminal step in the synthesis of PHA is catalyzed by PHA synthase. Genes encoding this enzyme have been cloned, and the primary sequence of the protein, PhaC, is deduced from the nucleotide sequences of more than 30 organisms. PHA synthases are grouped into three classes based on substrate range, molecular mass, and whether or not there is a requirement for phaE in addition to thephaC gene product. Here we report the results of an analysis of a PHA synthase that does not fit any of the described classes. This novel PHA synthase from Bacillus megaterium required PhaC (PhaCBm) and PhaR (PhaRBm) for activity in vivo and in vitro. PhaCBm showed greatest similarity to the PhaCs of class III in both size and sequence. Unlike those in class III, the 40-kDa PhaE was not required, and furthermore, the 22-kDa PhaRBm had no obvious homology to PhaE. Previously we showed that PhaCBm, and here we show that PhaRBm, is localized to inclusion bodies in living cells. We show that two forms of PHA synthase exist, an active form in PHA-accumulating cells and an inactive form in nonaccumulating cells. PhaC was constitutively produced in both cell types but was more susceptible to protease degradation in the latter type. Our data show that the role of PhaR is posttranscriptional and that it functions directly or indirectly with PhaCBm to produce an active PHA synthase.


2021 ◽  
Author(s):  
Nilima Dinesh Kumar ◽  
Bram Ter Ellen ◽  
Ellen M Bouma ◽  
Berit Troost ◽  
Denise P. I van de Pol ◽  
...  

Antiviral therapies are urgently needed to treat and limit the development of severe COVID-19 disease. Ivermectin, a broad-spectrum anti-parasitic agent, has been shown to have anti-SARS-CoV-2 activity in Vero cells at a concentration of 5 micromolar. These in vitro results triggered the investigation of ivermectin as a treatment option to alleviate COVID-19 disease. In April 2021, the World Health Organization stated, however, the following: "the current evidence on the use of ivermectin to treat COVID-19 patients is inconclusive". It is speculated that the in vivo concentration of ivermectin is too low to exert a strong antiviral effect. Here, we performed a head-to head comparison of the antiviral activity of ivermectin and a structurally related, but metabolically more stable, moxidectin in multiple in vitro models of SARS-CoV-2 infection, including physiologically relevant human respiratory epithelial cells. Both moxidectin and ivermectin exhibited antiviral activity in Vero E6 cells. Subsequent experiments revealed that the compounds predominantly act on a step after virus cell entry. Surprisingly, however, in human airway-derived cell models, moxidectin and ivermectin failed to inhibit SARS-CoV-2 infection, even at a concentration of 10 micromolar. These disappointing results calls for a word of caution in the interpretation of anti-SARS-CoV-2 activity of drugs solely based on Vero cells. Altogether, these findings suggest that, even by using a high-dose regimen of ivermectin or switching to another drug in the same class are unlikely to be useful for treatment against SARS-CoV-2 in humans.


2021 ◽  
Vol 9 (5) ◽  
pp. 944
Author(s):  
Sofie Jacobs ◽  
Lanjiao Wang ◽  
Ana Lucia Rosales Rosas ◽  
Ria Van Berwaer ◽  
Evelien Vanderlinden ◽  
...  

Favipiravir (T-705) is a broad-spectrum antiviral drug that inhibits RNA viruses after intracellular conversion into its active form, T-705 ribofuranosyl 5′-triphosphate. We previously showed that T-705 is able to significantly inhibit the replication of chikungunya virus (CHIKV), an arbovirus transmitted by Aedes mosquitoes, in mammalian cells and in mouse models. In contrast, the effect of T-705 on CHIKV infection and replication in the mosquito vector is unknown. Since the antiviral activity of T-705 has been shown to be cell line-dependent, we studied here its antiviral efficacy in Aedes-derived mosquito cells and in Aedes aegypti mosquitoes. Interestingly, T-705 was devoid of anti-CHIKV activity in mosquito cells, despite being effective against CHIKV in Vero cells. By investigating the metabolic activation profile, we showed that, unlike Vero cells, mosquito cells were not able to convert T-705 into its active form. To explore whether alternative metabolization pathways might exist in vivo, Aedes aegypti mosquitoes were infected with CHIKV and administered T-705 via an artificial blood meal. Virus titrations of whole mosquitoes showed that T-705 was not able to reduce CHIKV infection in mosquitoes. Combined, these in vitro and in vivo data indicate that T-705 lacks antiviral activity in mosquitoes due to inadequate metabolic activation in this animal species.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
S Rakedzon ◽  
A Neuberger ◽  
A J Domb ◽  
N Petersiel ◽  
E Schwartz

Abstract Background Nearly a year into the COVID-19 pandemic, we still lack effective anti-SARS-CoV-2 drugs with substantial impact on mortality rates except for dexamethasone. As the search for effective antiviral agents continues, we aimed to review data on the potential of repurposing antiparasitic drugs against viruses in general, with an emphasis on coronaviruses. Methods We performed a review by screening in vitro and in vivo studies that assessed the antiviral activity of several antiparasitic agents: chloroquine, hydroxychloroquine (HCQ), mefloquine, artemisinins, ivermectin, nitazoxanide (NTZ), niclosamide, atovaquone and albendazole. Results For HCQ and chloroquine we found ample in vitro evidence of antiviral activity. Cohort studies that assessed the use of HCQ for COVID-19 reported conflicting results, but randomized controlled trials (RCTs) demonstrated no effect on mortality rates and no substantial clinical benefits of HCQ used either for prevention or treatment of COVID-19. We found two clinical studies of artemisinins and two studies of NTZ for treatment of viruses other than COVID-19, all of which showed mixed results. Ivermectin was evaluated in one RCT and few observational studies, demonstrating conflicting results. As the level of evidence of these data is low, the efficacy of ivermectin against COVID-19 remains to be proven. For chloroquine, HCQ, mefloquine, artemisinins, ivermectin, NTZ and niclosamide, we found in vitro studies showing some effects against a wide array of viruses. We found no relevant studies for atovaquone and albendazole. Conclusions As the search for an effective drug active against SARS-CoV-2 continues, we argue that pre-clinical research of possible antiviral effects of compounds that could have antiviral activity should be conducted. Clinical studies should be conducted when sufficient in vitro evidence exists, and drugs should be introduced into widespread clinical use only after being rigorously tested in RCTs. Such a search may prove beneficial in this pandemic or in outbreaks yet to come.


Sign in / Sign up

Export Citation Format

Share Document