scholarly journals PhaC and PhaR Are Required for Polyhydroxyalkanoic Acid Synthase Activity in Bacillus megaterium

2001 ◽  
Vol 183 (14) ◽  
pp. 4235-4243 ◽  
Author(s):  
Gabriel J. McCool ◽  
Maura C. Cannon

ABSTRACT Polyhydroxyalkanoic acids (PHAs) are a class of polyesters stored in inclusion bodies and found in many bacteria and in some archaea. The terminal step in the synthesis of PHA is catalyzed by PHA synthase. Genes encoding this enzyme have been cloned, and the primary sequence of the protein, PhaC, is deduced from the nucleotide sequences of more than 30 organisms. PHA synthases are grouped into three classes based on substrate range, molecular mass, and whether or not there is a requirement for phaE in addition to thephaC gene product. Here we report the results of an analysis of a PHA synthase that does not fit any of the described classes. This novel PHA synthase from Bacillus megaterium required PhaC (PhaCBm) and PhaR (PhaRBm) for activity in vivo and in vitro. PhaCBm showed greatest similarity to the PhaCs of class III in both size and sequence. Unlike those in class III, the 40-kDa PhaE was not required, and furthermore, the 22-kDa PhaRBm had no obvious homology to PhaE. Previously we showed that PhaCBm, and here we show that PhaRBm, is localized to inclusion bodies in living cells. We show that two forms of PHA synthase exist, an active form in PHA-accumulating cells and an inactive form in nonaccumulating cells. PhaC was constitutively produced in both cell types but was more susceptible to protease degradation in the latter type. Our data show that the role of PhaR is posttranscriptional and that it functions directly or indirectly with PhaCBm to produce an active PHA synthase.

Blood ◽  
2012 ◽  
Vol 119 (2) ◽  
pp. 573-582 ◽  
Author(s):  
Roland Csépányi-Kömi ◽  
Gábor Sirokmány ◽  
Miklós Geiszt ◽  
Erzsébet Ligeti

Members of the Rac/Rho family of small GTPases play an essential role in phagocytic cells in organization of the actin cytoskeleton and production of toxic oxygen compounds. GTPase-activating proteins (GAPs) decrease the amount of the GTP-bound active form of small GTPases, and contribute to the control of biologic signals. The number of potential Rac/RhoGAPs largely exceeds the number of Rac/Rho GTPases and the expression profile, and their specific role in different cell types is largely unknown. In this study, we report for the first time the properties of full-length ARHGAP25 protein, and show that it is specifically expressed in hematopoietic cells, and acts as a RacGAP both in vitro and in vivo. By silencing and overexpressing the protein in neutrophil model cell lines (PLB-985 and CosPhoxFcγR, respectively) and in primary macrophages, we demonstrate that ARHGAP25 is a negative regulator of phagocytosis acting probably via modulation of the actin cytoskeleton.


2008 ◽  
Vol 190 (12) ◽  
pp. 4173-4180 ◽  
Author(s):  
Qiuhe Lu ◽  
Jing Han ◽  
Ligang Zhou ◽  
Jian Zhou ◽  
Hua Xiang

ABSTRACT The haloarchaeon Haloferax mediterranei has shown promise for the economical production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a desirable bioplastic. However, little is known at present about the genes involved in PHBV synthesis in the domain Archaea. In this study, we cloned the gene cluster (phaEC Hme) encoding a polyhydroxyalkanoate (PHA) synthase in H. mediterranei CGMCC 1.2087 via thermal asymmetric interlaced PCR. Western blotting revealed that the phaE Hme and phaC Hme genes were constitutively expressed, and both the PhaEHme and PhaCHme proteins were strongly bound to the PHBV granules. Interestingly, CGMCC 1.2087 could synthesize PHBV in either nutrient-limited medium (supplemented with 1% starch) or nutrient-rich medium, up to 24 or 18% (wt/wt) in shaking flasks. Knockout of the phaEC Hme genes in CGMCC 1.2087 led to a complete loss of PHBV synthesis, and only complementation with the phaEC Hme genes together (but not either one alone) could restore to this mutant the capability for PHBV accumulation. The known haloarchaeal PhaC subunits are much longer at their C termini than their bacterial counterparts, and the C-terminal extension of PhaCHme was proven to be indispensable for its function in vivo. Moreover, the mixture of purified PhaEHme/PhaCHme (1:1) showed significant activity of PHA synthase in vitro. Taken together, our results indicated that a novel member of the class III PHA synthases, composed of PhaCHme and PhaEHme, accounted for the PHBV synthesis in H. mediterranei.


Endocrinology ◽  
2021 ◽  
Author(s):  
Malak El Sabeh ◽  
Subbroto Kumar Saha ◽  
Sadia Afrin ◽  
Mostafa A Borahay

Abstract The Wnt/β-catenin pathway is upregulated in uterine leiomyomas, the most common benign tumors in the female reproductive tract. Simvastatin is an anti-hyperlipidemic drug, and previous in vitro and in vivo reports showed it may have therapeutic effects in treating leiomyomas. The objective of this study is to examine the effects of simvastatin on the Wnt/β-catenin signaling pathway in leiomyoma. We treated primary and immortalized human leiomyoma cells with simvastatin and examined its effects using RT-qPCR, Western Blotting, and immunocytochemistry. We also examined the effects using human leiomyoma tissues from an ongoing, randomized controlled trial where women with symptomatic leiomyoma received simvastatin (40mg) or placebo for 3 months prior to their surgery. The results of this study reveal that simvastatin significantly reduced the expression of Wnt4 and its co-receptor LRP5. After simvastatin treatment, levels of total β-catenin and its active form, non-phosphorylated β-catenin, were reduced in both cell types. Additionally, simvastatin reduced the expression of Wnt4 and total β-catenin, as well as non-phosphorylated β-catenin protein expression in response to estrogen and progesterone. Simvastatin also inhibited the expression of c-Myc, a downstream target of the Wnt/β-catenin pathway. The effect of simvastatin on non-phosphorylated-β-catenin, the key regulator of the Wnt/β-catenin pathway, was recapitulated in human leiomyoma tissue. These results suggest that simvastatin may have a beneficial effect on uterine leiomyoma through suppressing the overactive Wnt/β-catenin pathway.


2021 ◽  
Author(s):  
Kunlakanya Jitobaom ◽  
Chompunuch Boonarkart ◽  
Suwimon Manopwisedjaroen ◽  
Nuntaya Punyadee ◽  
Suparerk Borwornpinyo ◽  
...  

Abstract Despite the urgent need for effective antivirals against SARS-CoV-2 to mitigate the catastrophic impact of the COVID-19 pandemic, there are still no proven effective and widely available antivirals for COVID-19 treatment. Favipiravir and Ivermectin are among common repurposed drugs, which have been provisionally used in some countries. There have been clinical trials with mixed results, and therefore, it is still inconclusive whether they are effective or should be dismissed. It is plausible that the lack of clear-cut clinical benefits was due to the finding of only marginal levels of in vivo antiviral activity. An obvious way to improve the activity of antivirals is to use them in synergistic combinations. Here we show that Favipiravir and Ivermectin had the synergistic effects against SARS-CoV-2 in Vero cells. The combination may provide better efficacy in COVID-19 treatment. In addition, we found that Favipiravir had an additive effect with Niclosamide, another repurposed anti-parasitic drug with anti-SARS-CoV-2 activity. However, the anti-SARS-CoV-2 activity of Favipiravir was drastically reduced when tested in Calu-3 cells. This suggested that this cell type might not be able to metabolize Favipiravir into its active form, and that this deficiency in some cell types may affect in vivo efficacy of this drug.


Development ◽  
1992 ◽  
Vol 114 (1) ◽  
pp. 59-66 ◽  
Author(s):  
T.L. Wood ◽  
R.D. Streck ◽  
J.E. Pintar

The insulin-like growth factors (IGFs) stimulate mitogenesis in a variety of cell types both in vitro and in vivo. These effects are mediated by both IGF receptors and a family of IGF binding proteins (IGFBPs), which are found complexed with the IGFs in serum and tissue fluids. Here we compare the sites of expression during early rat embryogenesis of the genes encoding the RGD-containing IGF binding protein IGFBP-2 and IGF-II. At all ages from early post-implantation through mid-gestation, the expression of IGFBP-2 was highly complementary to IGF-II. IGFBP-2 mRNA was detected throughout the epiblast of the egg cylinder as early as e7, when IGF-II expression was restricted to trophectoderm and other extraembryonic cells. As gastrulation proceeded, IGFBP-2 expression ceased as IGF-II expression began in the newly formed embryonic and extra-embryonic mesoderm, but was retained in other epiblast derivatives including the surface ectoderm and neuroectoderm, throughout its rostral-caudal extent. By e10-e11, IGFBP-2 expression in neuroectoderm was restricted to the rostral brain of the primary neural tube and was found in the new population of neuroepithelium formed in the tail bud during secondary neurulation. IGFBP-2 expression remained high in the ventricular layer of the rostral brain into mid-gestation ages but decreased or disappeared as cells entered the mantle layer and began to express the neurofilament-related gene alpha-internexin. IGFBP-2 mRNA was abundant in surface ectoderm, particularly that of the branchial arches, and all ectodermal placodes.(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 630
Author(s):  
Huili Lyu ◽  
Cody M. Elkins ◽  
Jessica L. Pierce ◽  
C. Henrique Serezani ◽  
Daniel S. Perrien

Excess inflammation and canonical BMP receptor (BMPR) signaling are coinciding hallmarks of the early stages of injury-induced endochondral heterotopic ossification (EHO), especially in the rare genetic disease fibrodysplasia ossificans progressiva (FOP). Multiple inflammatory signaling pathways can synergistically enhance BMP-induced Smad1/5/8 activity in multiple cell types, suggesting the importance of pathway crosstalk in EHO and FOP. Toll-like receptors (TLRs) and IL-1 receptors mediate many of the earliest injury-induced inflammatory signals largely via MyD88-dependent pathways. Thus, the hypothesis that MyD88-dependent signaling is required for EHO was tested in vitro and in vivo using global or Pdgfrα-conditional deletion of MyD88 in FOP mice. As expected, IL-1β or LPS synergistically increased Activin A (ActA)-induced phosphorylation of Smad 1/5 in fibroadipoprogenitors (FAPs) expressing Alk2R206H. However, conditional deletion of MyD88 in Pdgfrα-positive cells of FOP mice did not significantly alter the amount of muscle injury-induced EHO. Even more surprisingly, injury-induced EHO was not significantly affected by global deletion of MyD88. These studies demonstrate that MyD88-dependent signaling is dispensable for injury-induced EHO in FOP mice.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Amber R Paulson ◽  
Maureen O’Callaghan ◽  
Xue-Xian Zhang ◽  
Paul B Rainey ◽  
Mark R H Hurst

Abstract The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.


Sign in / Sign up

Export Citation Format

Share Document