scholarly journals Cerebrospinal Fluid Efflux Through Dynamic Paracellular Pores on Venule as a Missing Piece for the Image of Brain Drainage System

Author(s):  
Yaqiong Dong ◽  
Ting Xu ◽  
Lan Yuan ◽  
Yahan Wang ◽  
Siwang Yu ◽  
...  

Abstract Background: The glymphatic system has been considered to contribute to a larger portion of parenchyma waste clearance and related to pathogenesis of many neural degenerative diseases such as the Alzheimer’s disease (AD). However, up to date, the key route for the efflux from perivascular spaces to the blood pool remains a mystery.Methods: BBB-impermeable fluorescent lanthanide probes of different size were first applied as cerebrospinal fluid (CSF)/interstitial fluid (ISF) tracers to quantitatively clarify the relative importance of different pathways to drain CSF/ISF solutes. The in vivo dynamic flows of subarachnoid CSF labeled with fluorescein isothiocyanate-dextran (4 kDa) tracers along brain blood vessels were observed under a two-photon confocal laser scanning microscope. Results: Three phasic process for the brain drainage was observed, in which the rapid efflux of ISF solutes with a time constant close to the CSF oscillation during sleep appeals for new routes from perivenuous spaces to the blood pool. Careful observation on the dynamic efflux in vivo revealed a novel drainage pathway in which CSF molecules converge into the bloodstream directly through dynamic trumpet-like pores (basolateral f<8 μm; apical f<2 μm) on the wall of brain venule in mice. Zn2+, an inducer of reconstruction of the tight junctions (TJs) in vascular endothelial cells, could facilitate the brain clearance of macromolecular ISF solutes. Deficit clearance of Aβ through the asymmetric pores on venule potentially causing perivascular space dilation was observed on the AD model mice.Conclusions: The novel asymmetric pore path through reconstruction of endothelial TJs on the wall of venule shall provide a key piece for ISF solutes to drainage from brain in very rapid pathway. The update image would help to understand the structure and the regulation of glymphatic clearance of brain metabolites such as Aβ in search for the solutions of neurodegenerative diseases.

2019 ◽  
Author(s):  
Jeffrey Tithof ◽  
Douglas H. Kelley ◽  
Humberto Mestre ◽  
Maiken Nedergaard ◽  
John H. Thomas

AbstractBackgroundPerivascular spaces (PVSs) are annular channels that surround blood vessels and carry cerebrospinal fluid through the brain, sweeping away metabolic waste. In vivo observations reveal that they are not concentric, circular annuli, however: the outer boundaries are often oblate, and the blood vessels that form the inner boundaries are often offset from the central axis.MethodsWe model PVS cross-sections as circles surrounded by ellipses and vary the radii of the circles, major and minor axes of the ellipses, and two-dimensional eccentricities of the circles with respect to the ellipses. For each shape, we solve the governing Navier-Stokes equation to determine the velocity profile for steady laminar flow and then compute the corresponding hydraulic resistance.ResultsWe find that the observed shapes of PVSs have lower hydraulic resistance than concentric, circular annuli of the same size, and therefore allow faster, more efficient flow of cerebrospinal fluid. We find that the minimum hydraulic resistance (and therefore maximum flow rate) for a given PVS cross-sectional area occurs when the ellipse is elongated and intersects the circle, dividing the PVS into two lobes, as is common around pial arteries. We also find that if both the inner and outer boundaries are nearly circular, the minimum hydraulic resistance occurs when the eccentricity is large, as is common around penetrating arteries.ConclusionsThe concentric circular annulus assumed in recent studies is not a good model of the shape of actual PVSs observed in vivo, and it greatly overestimates the hydraulic resistance of the PVS. Our parameterization can be used to incorporate more realistic resistances into hydraulic network models of flow of cerebrospinal fluid in the brain. Our results demonstrate that actual shapes observed in vivo are nearly optimal, in the sense of offering the least hydraulic resistance. This optimization may well represent an evolutionary adaptation that maximizes clearance of metabolic waste from the brain.


1991 ◽  
Vol 11 (3) ◽  
pp. 353-360 ◽  
Author(s):  
Ulrich Dirnagl ◽  
Arno Villringer ◽  
Roland Gebhardt ◽  
Roman L. Haberl ◽  
Peter Schmiedek ◽  
...  

We used confocal laser scanning microscopy (CLSM) to investigate the morphology and three-dimensional relationships of the microcirculation of the superficial layers of the rat brain cortex in vivo. In anesthetized rats equipped with a closed cranial window (dura mater removed), after i.v. injection of 3 mg/100 g of body weight of fluorescein in 0.5 ml of saline, serial optical sections of the brain cortex intraparenchymal microcirculation were taken. Excitation was at a wavelength of 488 nm (argon laser), and emission was collected above 515 nm. CLSM provided images of brain vessels with sufficient signal-to-noise ratio for three-dimensional reconstructions down to a depth of 250 μm beneath the surface of the brain. Compared to conventional fluorescence microscopy, CLSM has a much higher axial resolution and higher depth of penetration. Laser light-induced intravascular aggregates, irregularities of erythrocyte flow, or microvascular occlusions (“light and dye injury”) were not apparent in the current experimental paradigm. CLSM is a promising new tool for in vivo visualization of the cerebral microcirculation. Future studies have to characterize the potential damage to the tissue caused by the cranial window preparation and light and dye mechanisms.


2004 ◽  
Vol 48 (1) ◽  
pp. 236-241 ◽  
Author(s):  
Sabine Bork ◽  
Naoaki Yokoyama ◽  
Yuzuru Ikehara ◽  
Sanjay Kumar ◽  
Chihiro Sugimoto ◽  
...  

ABSTRACT We examined the inhibitory effects of three heparins on the growth of Babesia parasites. The multiplication of Babesia bovis, B. bigemina, B. equi, and B. caballi in in vitro cultures and that of B. microti in vivo were significantly inhibited in the presence of heparins, as determined by light microscopy. Treatment with various concentrations of heparin showed complete clearance of the intracellular parasites. Interestingly, a higher percentage of abnormally multidividing B. bovis parasites was observed in the presence of low concentrations of heparin. Furthermore, fluorescein isothiocyanate-labeled heparin was preferably found on the surfaces of extracellular merozoites, as detected by confocal laser scanning microscopy. These findings indicate that the heparin covers the surfaces of babesial merozoites and inhibits their subsequent invasion of erythrocytes.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3749
Author(s):  
Yingnan Si ◽  
Ya Zhang ◽  
Hanh Giai Ngo ◽  
Jia-Shiung Guan ◽  
Kai Chen ◽  
...  

Triple-negative breast cancers (TNBCs) are highly aggressive and recurrent. Standard cytotoxic chemotherapies are currently the main treatment options, but their clinical efficacies are limited and patients usually suffer from severe side effects. The goal of this study was to develop and evaluate targeted liposomes-delivered combined chemotherapies to treat TNBCs. Specifically, the IC50 values of the microtubule polymerization inhibitor mertansine (DM1), mitotic spindle assembly defecting taxane (paclitaxel, PTX), DNA synthesis inhibitor gemcitabine (GC), and DNA damage inducer doxorubicin (AC) were tested in both TNBC MDA-MB-231 and MDA-MB-468 cells. Then we constructed the anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) tagged liposomes and confirmed its TNBC cell surface binding using flow cytometry, internalization with confocal laser scanning microscopy, and TNBC xenograft targeting in NSG female mice using In Vivo Imaging System. The safe dosage of anti-EGFR liposomal chemotherapies, i.e., <20% body weight change, was identified. Finally, the in vivo anti-tumor efficacy studies in TNBC cell line-derived xenograft and patient-derived xenograft models revealed that the targeted delivery of chemotherapies (mertansine and gemcitabine) can effectively inhibit tumor growth. This study demonstrated that the targeted liposomes enable the new formulations of combined therapies that improve anti-TNBC efficacy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 770
Author(s):  
Patrick M. Perrigue ◽  
Richard A. Murray ◽  
Angelika Mielcarek ◽  
Agata Henschke ◽  
Sergio E. Moya

Nanoformulations offer multiple advantages over conventional drug delivery, enhancing solubility, biocompatibility, and bioavailability of drugs. Nanocarriers can be engineered with targeting ligands for reaching specific tissue or cells, thus reducing the side effects of payloads. Following systemic delivery, nanocarriers must deliver encapsulated drugs, usually through nanocarrier degradation. A premature degradation, or the loss of the nanocarrier coating, may prevent the drug’s delivery to the targeted tissue. Despite their importance, stability and degradation of nanocarriers in biological environments are largely not studied in the literature. Here we review techniques for tracing the fate of nanocarriers, focusing on nanocarrier degradation and drug release both intracellularly and in vivo. Intracellularly, we will discuss different fluorescence techniques: confocal laser scanning microscopy, fluorescence correlation spectroscopy, lifetime imaging, flow cytometry, etc. We also consider confocal Raman microscopy as a label-free technique to trace colocalization of nanocarriers and drugs. In vivo we will consider fluorescence and nuclear imaging for tracing nanocarriers. Positron emission tomography and single-photon emission computed tomography are used for a quantitative assessment of nanocarrier and payload biodistribution. Strategies for dual radiolabelling of the nanocarriers and the payload for tracing carrier degradation, as well as the efficacy of the payload delivery in vivo, are also discussed.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1833
Author(s):  
Shannon Morgan McCabe ◽  
Ningning Zhao

Manganese (Mn) is a trace nutrient necessary for life but becomes neurotoxic at high concentrations in the brain. The brain is a “privileged” organ that is separated from systemic blood circulation mainly by two barriers. Endothelial cells within the brain form tight junctions and act as the blood–brain barrier (BBB), which physically separates circulating blood from the brain parenchyma. Between the blood and the cerebrospinal fluid (CSF) is the choroid plexus (CP), which is a tissue that acts as the blood–CSF barrier (BCB). Pharmaceuticals, proteins, and metals in the systemic circulation are unable to reach the brain and spinal cord unless transported through either of the two brain barriers. The BBB and the BCB consist of tightly connected cells that fulfill the critical role of neuroprotection and control the exchange of materials between the brain environment and blood circulation. Many recent publications provide insights into Mn transport in vivo or in cell models. In this review, we will focus on the current research regarding Mn metabolism in the brain and discuss the potential roles of the BBB and BCB in maintaining brain Mn homeostasis.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000013077
Author(s):  
Corey W Bown ◽  
Roxana O Carare ◽  
Matthew S Schrag ◽  
Angela L Jefferson

Perivascular spaces (PVS) are fluid filled compartments that are part of the cerebral blood vessel wall and represent the conduit for fluid transport in and out of the brain. PVS are considered pathologic when sufficiently enlarged to be visible on magnetic resonance imaging. Recent studies have demonstrated that enlarged PVS (ePVS) may have clinical consequences related to cognition. Emerging literature points to arterial stiffening and abnormal protein aggregation in vessel walls as two possible mechanisms that drive ePVS formation. In this review, we describe the clinical consequences, anatomy, fluid dynamics, physiology, risk factors, and in vivo quantification methods of ePVS. Given competing views of PVS physiology, we detail the two most prominent theoretical views and review ePVS associations with other common small vessel disease markers. As ePVS are a marker of small vessel disease and ePVS burden is higher in Alzheimer’s disease, a comprehensive understanding about ePVS is essential in developing prevention and treatment strategies.


2001 ◽  
Vol 10 (3) ◽  
pp. 329-342 ◽  
Author(s):  
Emmanouhl S. Tzanakakis ◽  
Chang-Chun Hsiao ◽  
Taku Matsushita ◽  
Rory P. Remmel ◽  
Wei-Shou Hu

Cytochrome P450 (CYP450) enzymes are essential for xenobiotic metabolism. Although CYP450s are found in many tissues, CYP2B1/2 are primarily expressed in the rat liver. The constitutive expression in vivo of CYP2B1/2 is low but it is induced in the presence of various drugs such as phenobarbital (PB). In this study, CYP2B1/2 activity in cultured hepatocytes was assessed in situ with the introduction of a fluorogenic sub-strate, pentoxyresorufin. The product of 7-pentoxyresorufin-O-dealkylation (PROD), which is catalyzed specifically by CYP2B1/2, was detected using confocal laser scanning microscopy (CLSM). Primary hepatocytes cultured as monolayers on collagen-coated surfaces exhibited background PROD activity and minimal PB inducibility after 4 days in culture. In contrast, rat hepatocytes organized in compacted aggregates, or spheroids, exhibited higher levels of PROD activity and retained their ability for PB induction. The results from the CLSM analysis were verified by RT-PCR and Western immunoblotting analysis. Furthermore, CLSM in conjunction with image processing techniques and three-dimensional reconstruction revealed the localization of enhanced PROD activity in the center of spheroids. The results support the use of CLSM as a powerful tool for investigating CYP2B1/2 activity in cultured rat hepatocytes.


Sign in / Sign up

Export Citation Format

Share Document