scholarly journals Superinfections in critically ill COVID-19 patients - an association with Dexamethasone?

Author(s):  
Signe Sovik ◽  
Andreas Barrat-Due ◽  
Trine Kasine ◽  
Theresa Olasveengen ◽  
Marianne Wigernes Strand ◽  
...  

Abstract BacgroundSuper-infections in COVID-19 patients with acute respiratory distress syndrome (ARDS) on mechanical ventilation were initially reported to be rare. Little is known of their incidence after dexamethasone was introduced as standard care. We aimed to determine the incidence and characteristics of superinfections in mechanically ventilated COVID-19 patients during the course of the COVID-19 pandemic, and explore the possible impact of the introduction of dexamethasone as standard therapy. MethodsIn this national, multi-center, observational, retrospective study we included patients ≥ 18 years admitted from March 1 st 2020 to January 31 st 2021 with polymerase chain reaction (PCR)-confirmed SARSCoV-2 infection treated with invasive mechanical ventilation. Data was collected from electronic health records. Patient characteristics, clinical findings, microbiology, length of stay and 90-day survival were examined with backwards stepwise multiple regression. Results155 patients (115 men, mean age 62 years, range 26-84 years) were included. 73 patients (47%) had a total of 101 superinfections where pneumonia dominated (70%). Superinfections were more commonly observed in patients receiving dexamethasone (67% vs 30%, p<0.0001), and in patients with pre-existing autoimmune disease (18% vs 5%, p<0.01). Invasive fungal infections were reported exclusively in dexamethasone-treated patients [9/72 (13%) vs 0/83 (0%), p<0.0001]. There was no difference in 90-day survival between patients with and patients without superinfections (64% versus 73%, p=0.238). In multiple regression analysis, superinfection was associated with dexamethasone use [OR 5.35 (2.62–11.35), p<0.001], pre-existing autoimmune disease [OR 4.90 (1.50–19.4), p=0.008] and higher lymphocyte count at the time of admission [OR 2.31 (1.23–4.86), p=0.009]. ConclusionIn critically ill COVID-19 patients receiving invasive ventilation, introduction of dexamethasone as standard of care was strongly and independently associated with superinfections. A focus on this complication is warranted when studying alternative anti-inflammatory therapy.

Author(s):  
Samuele Ceruti ◽  
Marco Roncador ◽  
Andrea Saporito ◽  
Maira Biggiogero ◽  
Andrea Glotta ◽  
...  

AbstractInvasive mechanical ventilation (IMV) is the standard treatment in critically ill COVID-19 patients with acute severe respiratory distress syndrome (ARDS). When IMV setting is extremely aggressive, especially through the application of high positive-end-expiratory respiration (PEEP) values, lung damage can occur. Until today, in COVID-19 patients, two types of ARDS were identified (L- and H-type); for the L-type, a lower PEEP strategy was supposed to be preferred, but data are still missing. The aim of this study was to evaluate if a clinical management with lower PEEP values in critically ill L-type COVID-19 patients was safe and efficient in comparison to usual standard of care. A retrospective analysis was conducted on consecutive patients with COVID-19 ARDS admitted to the ICU and treated with IMV. Patients were treated with a lower PEEP strategy adapted to BMI: PEEP 10 cmH2O if BMI < 30 kg m−2, PEEP 12 cmH2O if BMI 30–50 kg m−2, PEEP 15 cmH2O if BMI > 50 kg m−2. Primary endpoint was the PaO2/FiO2 ratio evolution during the first 3 IMV days; secondary endpoints were to analyze ICU length of stay (LOS) and IMV length. From March 2 to January 15, 2021, 79 patients underwent IMV. Average applied PEEP was 11 ± 2.9 cmH2O for BMI < 30 kg m−2 and 16 ± 3.18 cmH2O for BMI > 30 kg m−2. During the first 24 h of IMV, patients’ PaO2/FiO2 ratio presented an improvement (p<0.001; CI 99%) that continued daily up to 72 h (p<0.001; CI 99%). Median ICU LOS was 15 days (10–28); median duration of IMV was 12 days (8–26). The ICU mortality rate was 31.6%. Lower PEEP strategy treatment in L-type COVID-19 ARDS resulted in a PaO2/FiO2 ratio persistent daily improvement during the first 72 h of IMV. A lower PEEP strategy could be beneficial in the first phase of ARDS in critically ill COVID-19 patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yongfang Zhou ◽  
Steven R. Holets ◽  
Man Li ◽  
Gustavo A. Cortes-Puentes ◽  
Todd J. Meyer ◽  
...  

AbstractPatient–ventilator asynchrony (PVA) is commonly encountered during mechanical ventilation of critically ill patients. Estimates of PVA incidence vary widely. Type, risk factors, and consequences of PVA remain unclear. We aimed to measure the incidence and identify types of PVA, characterize risk factors for development, and explore the relationship between PVA and outcome among critically ill, mechanically ventilated adult patients admitted to medical, surgical, and medical-surgical intensive care units in a large academic institution staffed with varying provider training background. A single center, retrospective cohort study of all adult critically ill patients undergoing invasive mechanical ventilation for ≥ 12 h. A total of 676 patients who underwent 696 episodes of mechanical ventilation were included. Overall PVA occurred in 170 (24%) episodes. Double triggering 92(13%) was most common, followed by flow starvation 73(10%). A history of smoking, and pneumonia, sepsis, or ARDS were risk factors for overall PVA and double triggering (all P < 0.05). Compared with volume targeted ventilation, pressure targeted ventilation decreased the occurrence of events (all P < 0.01). During volume controlled synchronized intermittent mandatory ventilation and pressure targeted ventilation, ventilator settings were associated with the incidence of overall PVA. The number of overall PVA, as well as double triggering and flow starvation specifically, were associated with worse outcomes and fewer hospital-free days (all P < 0.01). Double triggering and flow starvation are the most common PVA among critically ill, mechanically ventilated patients. Overall incidence as well as double triggering and flow starvation PVA specifically, portend worse outcome.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ines Gragueb-Chatti ◽  
Alexandre Lopez ◽  
Dany Hamidi ◽  
Christophe Guervilly ◽  
Anderson Loundou ◽  
...  

Abstract Background Dexamethasone decreases mortality in patients with severe coronavirus disease 2019 (COVID-19) and has become the standard of care during the second wave of pandemic. Dexamethasone is an immunosuppressive treatment potentially increasing the risk of secondary hospital acquired infections in critically ill patients. We conducted an observational retrospective study in three French intensive care units (ICUs) comparing the first and second waves of pandemic to investigate the role of dexamethasone in the occurrence of ventilator-associated pneumonia (VAP) and blood stream infections (BSI). Patients admitted from March to November 2020 with a documented COVID-19 and requiring mechanical ventilation (MV) for ≥ 48 h were included. The main study outcomes were the incidence of VAP and BSI according to the use of dexamethasone. Secondary outcomes were the ventilator-free days (VFD) at day-28 and day-60, ICU and hospital length of stay and mortality. Results Among the 151 patients included, 84 received dexamethasone, all but one during the second wave. VAP occurred in 63% of patients treated with dexamethasone (DEXA+) and 57% in those not receiving dexamethasone (DEXA−) (p = 0.43). The cumulative incidence of VAP, considering death, duration of MV and late immunosuppression as competing factors was not different between groups (p = 0.59). A multivariate analysis did not identify dexamethasone as an independent risk factor for VAP occurrence. The occurrence of BSI was not different between groups (29 vs. 30%; p = 0.86). DEXA+ patients had more VFD at day-28 (9 (0–21) vs. 0 (0–11) days; p = 0.009) and a reduced ICU length of stay (20 (11–44) vs. 32 (17–46) days; p = 0.01). Mortality did not differ between groups. Conclusions In this cohort of COVID-19 patients requiring invasive MV, dexamethasone was not associated with an increased incidence of VAP or BSI. Dexamethasone might not explain the high rates of VAP and BSI observed in critically ill COVID-19 patients.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1656
Author(s):  
Emanuel Moisa ◽  
Dan Corneci ◽  
Silvius Negoita ◽  
Cristina Raluca Filimon ◽  
Andreea Serbu ◽  
...  

Background: Hematological indices can predict disease severity, progression, and death in patients with coronavirus disease-19 (COVID-19). Objectives: To study the predictive value of the dynamic changes (first 48 h after ICU admission) of the following ratios: neutrophil-to-lymphocyte (NLR), platelet-to-lymphocyte (PLR), monocyte-to-lymphocyte (MLR), systemic inflammation index (SII), and derived neutrophil-to-lymphocyte (dNLR) for invasive mechanical ventilation (IMV) need and death in critically ill COVID-19 patients. Methods: Observational, retrospective, and multicentric analysis on 272 patients with severe or critical COVID-19 from two tertiary centers. Hematological indices were adjusted for confounders through multivariate analysis using Cox regression. Results: Patients comprised 186 males and 86 females with no difference across groups (p > 0.05). ΔNLR > 2 had the best independent predictive value for IMV need (HR = 5.05 (95% CI, 3.06–8.33, p < 0.0001)), followed by ΔSII > 340 (HR = 3.56, 95% CI 2.21–5.74, p < 0.0001) and ΔdNLR > 1 (HR = 2.61, 95% CI 1.7–4.01, p < 0.0001). Death was also best predicted by an NLR > 11 (HR = 2.25, 95% CI: 1.31–3.86, p = 0.003) followed by dNLR > 6.93 (HR = 1.89, 95% CI: 1.2–2.98, p = 0.005) and SII > 3700 (HR = 1.68, 95% CI: 1.13–2.49, p = 0.01). Conclusions: Dynamic changes of NLR, SII, and dNLR independently predict IMV need and death in critically ill COVID-19 patients.


2021 ◽  
Author(s):  
Peter W Horby ◽  
Guilherme Pessoa-Amorim ◽  
Natalie Staplin ◽  
Jonathan R Emberson ◽  
Enti Spata ◽  
...  

Background: Aspirin has been proposed as a treatment for COVID-19 on the basis of its antithrombotic properties. Methods: In this randomised, controlled, open-label trial, several possible treatments were compared with usual care in patients hospitalised with COVID-19. Eligible and consenting adults were randomly allocated in a 1:1 ratio to either usual standard of care alone or usual standard of care plus 150mg aspirin once daily until discharge using web-based simple (unstratified) randomisation with allocation concealment. The primary outcome was 28-day mortality. The trial is registered with ISRCTN (50189673) and clinicaltrials.gov (NCT04381936). Findings: Between 01 November 2020 and 21 March 2021, 7351 patients were randomly allocated to receive aspirin and 7541 patients to receive usual care alone. Overall, 1222 (17%) patients allocated to aspirin and 1299 (17%) patients allocated to usual care died within 28 days (rate ratio 0.96; 95% confidence interval [CI] 0.89-1.04; p=0.35). Consistent results were seen in all pre-specified subgroups of patients. Patients allocated to aspirin had a slightly shorter duration of hospitalisation (median 8 days vs. 9 days) and a higher proportion were discharged from hospital alive within 28 days (75% vs. 74%; rate ratio 1.06; 95% CI 1.02-1.10; p=0.0062). Among those not on invasive mechanical ventilation at baseline, there was no significant difference in the proportion meeting the composite endpoint of invasive mechanical ventilation or death (21% vs. 22%; risk ratio 0.96; 95% CI 0.90-1.03; p=0.23). Aspirin use was associated with an absolute reduction in thrombotic events of 0.6% (SE 0.4%) and an absolute increase in clinically significant bleeding of 0.6% (SE 0.2%). Interpretation: In patients hospitalised with COVID-19, aspirin was not associated with reductions in 28-day mortality or in the risk of progressing to invasive mechanical ventilation or death but was associated with a small increase in the rate of being discharged alive.


2013 ◽  
pp. 184-188 ◽  
Author(s):  
Alvaro Sanabria ◽  
Ximena Gomez ◽  
Valentin Vega ◽  
Luis Carlos Dominguez ◽  
Camilo Osorio

Introduction: There are no established guidelines for selecting patients for early tracheostomy. The aim was to determine the factors that could predict the possibility of intubation longer than 7 days in critically ill adult patients. Methods: This is cohort study made at a general intensive care unit. Patients who required at least 48 hours of mechanical ventilation were included. Data on the clinical and physiologic features were collected for every intubated patient on the third day. Uni- and multivariate statistical analyses were conducted to determine the variables associated with extubation. Results: 163 (62%) were male, and the median age was 59±17 years. Almost one-third (36%) of patients required mechanical ventilation longer than 7 days. The variables strongly associated with prolonged mechanical ventilation were: age (HR 0.97 (95% CI 0.96-0.99); diagnosis of surgical emergency in a patient with a medical condition (HR 3.68 (95% CI 1.62-8.35), diagnosis of surgical condition-non emergency (HR 8.17 (95% CI 2.12-31.3); diagnosis of non-surgical-medical condition (HR 5.26 (95% CI 1.85-14.9); APACHE II (HR 0.91 (95% CI 0.85-0.97) and SAPS II score (HR 1.04 (95% CI 1.00-1.09) The area under ROC curve used for prediction was 0.52. 16% of patients were extubated after day 8 of intubation. Conclusions: It was not possible to predict early extubation in critically ill adult patients with invasive mechanical ventilation with common clinical scales used at the ICU. However, the probability of successfully weaning patients from mechanical ventilation without a tracheostomy is low after the eighth day of intubation.


Critical Care ◽  
2013 ◽  
Vol 17 (2) ◽  
pp. 223 ◽  
Author(s):  
Antonio M Esquinas Rodriguez ◽  
Peter J Papadakos ◽  
Michele Carron ◽  
Roberto Cosentini ◽  
Davide Chiumello

2016 ◽  
Vol 8 (2) ◽  
pp. 96-100
Author(s):  
Rahat Qureshi ◽  
Sheikh Irfan Ahmed ◽  
Amir Raza ◽  
Azra Amerjee

ABSTRACT Background Gynecological patients with serious underlying morbidities require admission into intensive care units (ICUs) albeit being few in numbers. Objectives To review gynecological cases with non-pregnancyrelated illness, admitted to ICU with respect to diagnosis, associated risk factors, intervention required, aspects of management, and rate of mortality. Materials and methods Retrospective record view of gynecological patients admitted in the ICU from 2005 to 2014. Setting Aga Khan University Hospital, Karachi. Findings Twenty-six patients were admitted with complications secondary to gynecological indications. The most common reason was pulmonary edema (26.9%); sepsis was documented in 23.1% of all patients. Hemorrhagic shock was found in 11.5% gynecological ICU admissions, cardiogenic shock in 15.4%, and renal failure in 7.7%. Fourteen critically ill women with gynecological cancer were admitted to the ICU (ovarian cancer, n = 8; cervical cancer, n = 1; and endometrial cancer, n = 5). The overall mortality of gynecological patients was 26.92%. The most common interventions were mechanical ventilation (96%) followed by arterial line insertion (88%) and central line insertion (85%). Conclusion Critically ill gynecological patients requiring invasive mechanical ventilation, central hemodynamic monitoring, and invasive arterial pressure monitoring should be admitted to an intensive care unit. How to cite this article Qureshi R, Ahmed SI, Raza A, Amerjee A. Predictors of Mortality of Critically Ill Gynecological Patients. J South Asian Feder Obst Gynae 2016;8(2):96-100.


Sign in / Sign up

Export Citation Format

Share Document