scholarly journals Tumor-B-Cell Interactions Promote Isotype Switching to an Immunosuppressive IgG4 Antibody Response Through Upregulation of IL-10 in Triple Negative Breast Cancers

Author(s):  
Nicole J. Toney ◽  
Lynn M. Opdenaker ◽  
Kader Cicek ◽  
Holly Archinal ◽  
Lisa Frerichs ◽  
...  

Abstract Background: Triple negative breast cancer (TNBC) is an aggressive breast cancer for which there is currently no targeted therapy. Tumor-infiltrating B-cells (TIB) have been observed in tumor tissues of TNBC patients, but their functional role is unclear. IgG4 is one of four antibody subclasses of IgG expressed and secreted by B cells. Unlike other IgG isotypes, IgG4 has an immunosuppressive function and is induced by Th2-type cytokines. In cancers such as melanoma, IgG4 has been linked with advanced disease and poor patient survival. Therefore, we sought to determine the role of IgG4 in TNBC. Methods: We performed co-culture assays to examine expression of Th2 cytokines by TNBC cells with and without the presence of B cells. We also performed in vitro class switching experiments with peripheral B cells with and without co-culture with TNBC cells in the presence or absence of an IL-10 blocking antibody. We examined expression of CD20 + TIB, IgG4 and Th2 cytokines by immunohistochemistry in 152 TNBC samples. Statistical analysis was done using Log-Rank and Cox-proportional hazards tests. Results: Our findings indicate that B cells interact with TNBC to drive chronic inflammatory responses through increased expression of inflammatory cytokines including the TH2 cytokines IL-4 and IL-10. In vitro class switching studies show that interactions between TNBC cell lines and B cells drive isotype switching to the IgG4 isotype in an IL-10 dependent manner. In patient tissues, expression of IgG4 correlates with CD20 and tumor expression of IL-10. Both IgG4 and tumor IL-10 are associated to shorter recurrence free survival (RFS) and overall survival (OS) in TNBC. In a multi-variant analysis, IL-10 was associated with poor outcomes indicating that tumor IL-10 may drive immune escape. Conclusions: These findings indicate that interactions between TIB and TNBC results in activation of chronic inflammatory signals that suppress antibody driven immune responses

2021 ◽  
Author(s):  
Nicole J. Toney ◽  
Lynn M. Opdenaker ◽  
Kader Cicek ◽  
Lisa Frerichs ◽  
Christopher Ryan Kennington ◽  
...  

Abstract BackgroundTriple negative breast cancer (TNBC) is an aggressive breast cancer for which there is currently no targeted therapy. Tumor-infiltrating B-cells (TIB) have been observed in tumor tissues of TNBC patients, but their functional role is unclear. IgG4 is one of four antibody subclasses of IgG expressed and secreted by B cells. Unlike other IgG isotypes, IgG4 has an immunosuppressive function and is induced by Th2-type cytokines. In cancers such as melanoma, IgG4 has been linked with advanced disease and poor patient survival. Therefore, we sought to determine the role of IgG4 in TNBC. MethodsWe performed co-culture assays to examine expression of Th2 cytokines by TNBC cells with and without the presence of B cells. We also performed in vitro class switching experiments with peripheral B cells with and without co-culture with TNBC cells in the presence or absence of an IL-10 blocking antibody. We examined expression of CD20 + TIB, IgG4 and Th2 cytokines by immunohistochemistry in 152 TNBC samples. Statistical analysis was done using Log-Rank and Cox-proportional hazards tests. ResultsOur findings indicate that B cells interact with TNBC to drive chronic inflammatory responses through increased expression of inflammatory cytokines including the TH2 cytokines IL-4 and IL-10. In vitro class switching studies show that interactions between TNBC cell lines and B cells drive isotype switching to the IgG4 isotype in an IL-10 dependent manner. In patient tissues, expression of IgG4 correlates with CD20 and tumor expression of IL-10. Both IgG4 and tumor IL-10 are associated to shorter recurrence free survival (RFS) and overall survival (OS) in TNBC. In a multi-variant analysis, IL-10 was associated with poor outcomes indicating that tumor IL-10 may drive immune escape. ConclusionsThese findings indicate that interactions between TIB and TNBC results in activation of chronic inflammatory signals that suppress antibody driven immune responses


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ragima Nadesh ◽  
Krishnakumar N. Menon ◽  
Lalitha Biswas ◽  
Ullas Mony ◽  
K. Subramania Iyer ◽  
...  

AbstractIn the present study, a protocol was developed for processing of human adipose derived mesenchymal stem cell secretome formulation of varying concentration. Its molecular composition was evaluated, and its effectiveness in vitro using breast cancer cell lines, and in vivo in a nude mice breast cancer model was studied to determine its role in suppressing triple negative breast cancer in a dose dependent manner. Because the secretome could have value as an add-on therapy along with a current drug, the effectiveness of the secretome both in monotherapy and in combination therapy along with paclitaxel was evaluated. The results showed significant cell kill when exposed to the secretome above 20 mg/ml at which concentration there was no toxicity to normal cells. 70 mg/ml of SF showed 90 ± 10% apoptosis and significant decrease in CD44+/CD24−, MDR1+ and PDL-1+ cancer cells. In vivo, the tumor showed no growth after daily intra tumor injections at 50 mg/ml and 100 mg/ml doses whereas substantial tumor growth occurred after saline intra tumor injection. The study concludes that SF is a potential biotherapeutic for breast cancer and could be used initially as an add-on therapy to other standard of care to provide improved efficacy without other adverse effects.


2020 ◽  
Author(s):  
Yajing Huang ◽  
Hao Wu ◽  
Xingrui Li

Abstract Background: Triple-negative breast cancer (TNBC) is a highly aggressive malignancy lack of sensitivity to chemo-, endocrine and targeted therapy. CDK4/6 inhibitors, combined with endocrine therapy, have been proven to be effective in postmenopausal women with HR-positive, HER2-negative advanced or metastatic breast cancer. So we investigated that whether CDK4/6 inhibitor palbociclib (PD) could enhance effects of cisplatin (CDDP) on TNBC.Methods: The effects of different drug regimens of PD and CDDP on MDA-MB-231 and RB-knockdown MDA-MB-231 (sh-MDA-MB-231) cells were assessed in vitro and vivo. MDA-MB-468 and RB-overexpression MDA-MB-468 cells were used to assess the effect of PD-CDDP regimen in vitro. Immunoblotting illustrated cyclin D1/RB/E2F axis signaling pathway.Results: PD induced G1 phase cell cycle arrest in MDA-MB-231 cell line. However, synchronous treatment with PD and CDDP for 24h, PD used for 24h and then followed by CDDP or CDDP used for 24h and then followed by PD all had no influence on cell apoptosis of MDA-MB-231 cells. We further investigated the effect of PD or CDDP withdrawal on sequential treatment and found that PD used for 48h and then withdrawn for 48h followed by CDDP (PD-CDDP) could significantly increase apoptosis, inhibit cell viability and colony formation of MDA-MB-231 cells, while in other regimens PD and CDDP represented additive or antagonistic response. Preferential use of PD could increase DNA damage by CDDP as measured through γH2AX. These findings above were negative in sh-MDA-MB-231 cells and cell function experiments of MDA-MB-468 and RB-overexpression MDA-MB-468 cells could draw similar conclusions, which indicated that PD enhanced the sensitivity of TNBC cells to CDDP in a RB dependent manner. In vivo, this combination treatment inhibited tumor growth and Ki-67 expression compared with single drug treatments in MDA-MB-231 xenograft models. Western blotting analysis presented that PD enhanced sensitivity to CDDP through CDK4/6-cyclin D-RB-E2F pathway. Conclusions: Pre-treatment with PD synchronized tumor cell cycle through CDK4/6-cyclin D1-RB-E2F pathway, which could increase anti-tumor effect of CDDP. PD-CDDP might be an effective treatment for RB-proficient TNBC patients.


2021 ◽  
Vol 9 (4) ◽  
pp. e001889
Author(s):  
Martin Böttcher ◽  
Heiko Bruns ◽  
Simon Völkl ◽  
Junyan Lu ◽  
Elisavet Chartomatsidou ◽  
...  

Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults. Emerging data suggest that CLL-cells efficiently evade immunosurveillance. T-cell deficiencies in CLL include immuno(metabolic) exhaustion that is achieved by inhibitory molecules, with programmed cell death 1/programmed cell death ligand 1 (PD-L1) signaling emerging as a major underlying mechanism. Moreover, CLL-cells are characterized by a close and recurrent interaction with their stromal niches in the bone marrow and lymph nodes. Here, they receive nurturing signals within a well-protected environment. We could previously show that the interaction of CLL-cells with stroma leads to c-Myc activation that is followed by metabolic adaptations. Recent data indicate that c-Myc also controls expression of the immune checkpoint molecule PD-L1. Therefore, we sought out to determine the role of stromal contact for the CLL-cells’ PD-L1 expression and thus their immuno-evasive phenotype.To do so, we analyzed PD-L1 expression on CLL cell (subsets) in untreated patients and on healthy donor-derived B-cells. Impact of stromal contact on PD-L1 expression on CLL-cells and the underlying signaling pathways were assessed in well-established in vitro niche models. Ex vivo and in vitro findings were validated in the Eµ-TCL1 transgenic CLL mouse model.We found increased PD-L1 expression on CLL-cells as compared with B-cells that was further enhanced in a cell-to-cell contact-dependent manner by stromal cells. In fact, circulating recent stromal-niche emigrants displayed higher PD-L1 levels than long-time circulating CLL-cells. Using our in vitro niche model, we show that a novel Notch-c-Myc-enhancer of zeste homolog 2 (EZH2) signaling axis controls PD-L1 upregulation. Ultimately, elevated PD-L1 levels conferred increased resistance towards activated autologous T-cells.In summary, our findings support the notion that the CLL microenvironment contributes to immune escape variants. In addition, several targetable molecules (eg, Notch or EZH2) could be exploited in view of improving immune responses in patients with CLL, which warrants further in-depth investigation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ting Yang ◽  
Yi-Xin Jiang ◽  
Ye Wu ◽  
Dong Lu ◽  
Rui Huang ◽  
...  

Resibufogenin (RBF), an active compound from Bufo bufonis, has been used for the treatment of multiple malignant cancers, including pancreatic cancer, colorectal cancer, and breast cancer. However, whether RBF could exert its antitumor effect by inhibiting angiogenesis remains unknown. Here, we aimed to explore the antiangiogenic activity of RBF and its underlying mechanism on human umbilical vein endothelial cell (HUVEC), and the therapeutic efficacy with regard to antiangiogenesis in vivo using two triple-negative breast cancer (TNBC) models. Our results demonstrated that RBF can inhibit the proliferation, migration, and tube formation of HUVECs in a dose-dependent manner. Spheroid sprouts were thinner and shorter after RBF treatment in vitro 3D spheroid sprouting assay. RBF also significantly suppressed VEGF-mediated vascular network formation in vivo Matrigel plug assay. In addition, Western blot analysis was used to reveal that RBF inhibited the phosphorylation of VEGFR2 and its downstream protein kinases FAK and Src in endothelial cells (ECs). Molecular docking simulations showed that RBF affected the phosphorylation of VEGFR2 by competitively binding to the ATP-bound VEGFR2 kinase domain, thus preventing ATP from providing phosphate groups. Finally, we found that RBF exhibited promising antitumor effect through antiangiogenesis in vivo without obvious toxicity. The present study first revealed the high antiangiogenic activity and the underlying molecular basis of RBF, suggesting that RBF could be a potential antiangiogenic agent for angiogenesis-related diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yubao Zhang ◽  
Xiaoran Ma ◽  
Huayao Li ◽  
Jing Zhuang ◽  
Fubin Feng ◽  
...  

Triple negative breast cancer (TNBC) is a subtype of breast cancer with complex heterogeneity, high invasiveness, and long-term poor prognosis. With the development of molecular pathology and molecular genetics, the gene map of TNBC with distinctive biological characteristics has been outlined more clearly. Natural plant extracts such as paclitaxel, vinblastine, colchicine etc., have occupied an important position in the treatment of hormone-independent breast cancer. Ursolic acid (UA), a triterpenoid acid compound derived from apple, pear, loquat leaves, etc., has been reported to be effective in a variety of cancer treatments, but there are few reports on the treatment of TNBC. This study performed comprehensive bioinformatics analysis and in vitro experiments to identify the effect of UA on TNBC treatment and its potential molecular mechanism. Our results showed that UA could not only reduce the proliferation, migration, and invasion in MDA-MB-231 and MDA-MB-468 cell lines with a dose-dependent manner but also induce cell cycle arrest and apoptosis. Meanwhile, we collected the gene expression data GSE45827 and GSE65194 from GEO for comparison between TNBC and normal cell type and obtained 724 DEGs. Subsequently, PLK1 and CCNB1 related to TNBC were screened as the key targets via topological analysis and molecular docking, and gene set enrichment analysis identified the key pathway as the p53 signaling pathway. In addition, quantitative real-time PCR and western blot verified the key genes were PLK1 and CCNB1. In vivo and in vitro experiments showed that UA could inhibit the growth of TNBC cells, and down-regulate the protein expression levels of PLK1 and CCNB1 by mediating p53 signaling pathway. These findings provide strong evidence for UA intervention in TNBC via multi-target therapy.


2018 ◽  
Author(s):  
Payal Tiwari ◽  
Ariane Blank ◽  
Chang Cui ◽  
Kelly Q. Schoenfelt ◽  
Guolin Zhou ◽  
...  

SUMMARYObesity is associated with increased incidence and severity of triple-negative breast cancer (TNBC); however, mechanisms underlying this relationship are incompletely understood. Macrophages, which accumulate in adipose tissue and are activated during obesity, are an attractive mechanistic link. Here, we show that, during obesity, murine and human mammary adipose tissue macrophages adopt a pro-inflammatory, metabolically- activated (MMe) macrophage phenotype that promotes TNBC stem-like markers and functions, including increased tumorsphere growthin vitroand tumor-initiating potentialin vivo. We demonstrate that MMe macrophages release cytokines in an NADPH oxidase 2 (NOX2)-dependent manner that signal through glycoprotein 130 (GP130) on TNBC cells to promote their stem-like properties. Accordingly, deletingNox2in myeloid cells or depleting GP130 in TNBC cells attenuates the ability of obesity to drive TNBC tumor formation. Our studies implicate MMe macrophage accumulation in mammary adipose tissue during obesity as a mechanism for promoting TNBC stemness and tumorigenesis.HIGHLIGHTS⁘Obesity promotes TNBC tumor formation and stemness.⁘Mammary adipose tissue macrophages are metabolically activated (MMe) in obese mice and humans.⁘MMe macrophages in mammary adipose tissue contribute to obesity-induced stemness.⁘MMe macrophages promote TNBC stemness through GP130 signaling.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Pengfei Xu ◽  
Wei Xiong ◽  
Yun Lin ◽  
Liping Fan ◽  
Hongchao Pan ◽  
...  

AbstractThe PD-L1 overexpression is an important event of immune escape and metastasis in triple-negative breast cancer (TNBC), but the molecular mechanism remains to be determined. Interferon gamma (IFNγ) represents a major driving force behind PD-L1 expression in tumor microenvironment, and histone deacetylase 2 (HDAC2) is required for IFN signaling. Here, we investigated the regulation of HDAC2 on the IFNγ-induced PD-L1 expression in TNBC cells. We found the HDAC2 and PD-L1 expression in TNBC was significantly higher than that in non-TNBC, and HDAC2 was positively correlated with PD-L1 expression. HDAC2 promoted PD-L1 induction by upregulating the phosphorylation of JAK1, JAK2, and STAT1, as well as the translocation of STAT1 to the nucleus and the recruitment of STAT1 to the PD-L1 promoter. Meanwhile, HDAC2 was recruited to the PD-L1 promoter by STAT1, and HDAC2 knockout compromised IFNγ-induced upregulation of H3K27, H3K9 acetylation, and the BRD4 recruitment in PD-L1 promoter. In addition, significant inhibition of proliferation, colony formation, migration, and cell cycle of TNBC cells were observed following knockout of HDAC2 in vitro. Furthermore, HDAC2 knockout reduced IFNγ-induced PD-L1 expression, lymphocyte infiltration, and retarded tumor growth and metastasis in the breast cancer mouse models. This study may provide evidence that HDAC2 promotes IFNγ-induced PD-L1 expression, suggesting a way for enhanced antitumor immunity when targeting the HDAC2 in TNBC.


2018 ◽  
Vol 16 (2) ◽  
pp. 127-137
Author(s):  
Paula Sofia Coutinho Medeiros ◽  
Ana Lúcia Marques Batista de Carvalho ◽  
Cristina Ruano ◽  
Juan Carlos Otero ◽  
Maria Paula Matos Marques

Background: The impact of the ubiquitous dietary phenolic compound p-coumaric acid on human breast cancer cells was assessed, through a multidisciplinary approach: Combined biological assays for cytotoxicity evaluation and biochemical profiling by Raman microspectroscopic analysis in cells. </P><P> Methods: Para-coumaric acid was shown to exert in vitro chemoprotective and antitumor activities, depending on the concentration and cell line probed: a significant anti-invasive ability was detected for the triple-negative MDA-MB-231 cells, while a high pro-oxidant effect was found for the estrogen- dependent MCF-7 cells. A striking cell selectivity was obtained, with a more noticeable outcome on the triple-negative MDA-MB-231 cell line. Results: The main impact on the cellular biochemical profile was verified to be on proteins and lipids, thus justifying the compound´s anti-invasive effect and chemoprotective ability. Conclusion: p-Coumaric acid was thus shown to be a promising chemoprotective/chemotherapeutic agent, particularly against the low prognosis triple-negative human breast adenocarcinoma.


2019 ◽  
Vol 15 (7) ◽  
pp. 738-742 ◽  
Author(s):  
Adnan Badran ◽  
Atia-tul-Wahab ◽  
Sharmeen Fayyaz ◽  
Elias Baydoun ◽  
Muhammad Iqbal Choudhary

Background:Breast cancer is the most prevalent cancer type in women globally. It is characterized by distinct subtypes depending on different gene expression patterns. Oncogene HER2 is expressed on the surface of cell and is responsible for cell growth regulation. Increase in HER2 receptor protein due to gene amplification, results in aggressive growth, and high metastasis in cancer cells.Methods:The current study evaluates and compares the anti-breast cancer effect of commercially available compounds against HER2 overexpressing BT-474, and triple negative MDA-MB-231 breast cancer cell lines.Results:Preliminary in vitro cell viability assays on these cell lines identified 6 lead molecules active against breast cancer. Convallatoxin (4), a steroidal lactone glycoside, showed the most potent activity with IC50 values of 0.63 ± 0.56, and 0.69 ± 0.59 µM against BT-474 and MDA-MB-231, respectively, whereas 4-[4-(Trifluoromethyl)-phenoxy] phenol (3) a phenol derivative, and Reserpine (5) an indole alkaloid selectively inhibited the growth of BT-474, and MDA-MB-231 breast cancer cells, respectively.Conclusion:These results exhibited the potential of small molecules in the treatment of HER2 amplified and triple negative breast cancers in vitro.


Sign in / Sign up

Export Citation Format

Share Document