scholarly journals Parallel Isolation and Characterization of Porcine Smooth Muscle, Endothelial and Mesenchymal Stromal Cells for Bioengineering Applications

Author(s):  
Sara Morini ◽  
Iris Pla-Palacín ◽  
Pilar Sainz-Arnal ◽  
Natalia Sánchez-Romero ◽  
Maria Falceto ◽  
...  

Abstract There is significant interest in the pig as the animal model of choice for organ transplantation and the study of tissue engineering (TE) products and applications. Currently, efforts are being taken to bioengineer solid organs to reduce donor shortages for transplantation. For complex organs such as the lung, heart, and liver, the vasculature represents a fundamental feature. Thus, to generate organs with a functional vascular network, the different cells constituting the building blocks of the blood vessels should be procured. However, due to species' specificities, porcine cell isolation, expansion, and characterization are not entirely straightforward compared to human cell procurement. Here, we report the establishment of simple and suitable methods for the isolation and characterization of distinct porcine cells for bioengineering purposes.We successfully isolated, expanded and characterized porcine bone marrow-derived mesenchymal stromal (pBM-MSC), aortic smooth muscle (pASMC), and umbilical vein endothelial cells (pUVEC). We demonstrated that the three cell types showed specific immunophenotypical features. Moreover, we demonstrated that pBM-MSC could preserve their multipotency in vitro, and pUVEC were capable of maintaining their functionality in vitro.These cultured cells could be further expanded and represent a useful cellular tool for TE purposes (i.e., for recellularization approaches of vascularized organs or in vitro angiogenesis studies).

Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


2002 ◽  
Vol 11 (4) ◽  
pp. 369-377 ◽  
Author(s):  
Makarand V. Risbud ◽  
Erdal Karamuk ◽  
René Moser ◽  
Joerg Mayer

Three-dimensional (3-D) scaffolds offer an exciting possibility to develop cocultures of various cell types. Here we report chitosan–collagen hydrogel-coated fabric scaffolds with defined mesh size and fiber diameter for 3-D culture of human umbilical vein endothelial cells (HUVECs). These scaffolds did not require pre-coating with fibronectin and they supported proper HUVEC attachment and growth. Scaffolds preserved endothelial cell-specific cobblestone morphology and cells were growing in compartments defined by the textile mesh. HUVECs on the scaffold maintained the property of contact inhibition and did not exhibit overgrowth until the end of in vitro culture (day 6). MTT assay showed that cells had preserved mitochondrial functionality. It was also noted that cell number on the chitosan-coated scaffold was lower than that of collagen-coated scaffolds. Calcein AM and ethidium homodimer (EtD-1) dual staining demonstrated presence of viable and metabolically active cells, indicating growth supportive properties of the scaffolds. Actin labeling revealed absence of actin stress fibers and uniform distribution of F-actin in the cells, indicating their proper attachment to the scaffold matrix. Confocal microscopic studies showed that HUVECs growing on the scaffold had preserved functionality as seen by expression of von Willebrand (vW) factor. Observations also revealed that functional HUVECs were growing at various depths in the hydrogel matrix, thus demonstrating the potential of these scaffolds to support 3-D growth of cells. We foresee the application of this scaffold system in the design of liver bioreactors wherein hepatocytes could be cocultured in parallel with endothelial cells to enhance and preserve liver-specific functions.


1985 ◽  
Vol 101 (3) ◽  
pp. 1071-1077 ◽  
Author(s):  
D Schubert ◽  
M LaCorbiere

Adherons are high molecular weight glycoprotein complexes which are released into the growth medium of cultured cells. They mediate the adhesive interactions of many cell types, including those of embryonic chick neural retina. The cell surface receptor for chick neural retina adherons has been purified, and shown to be a heparan sulfate proteoglycan (Schubert, D., and M. LaCorbiere, 1985, J. Cell Biol., 100:56-63). This paper describes the isolation and characterization of a protein in neural retina adherons which interacts specifically with the cell surface receptor. The 20,000-mol-wt protein, called retinal purpurin (RP), stimulates neural retina cell-substratum adhesion and prolongs the survival of neural retina cells in culture. The RP protein interacts with heparin and heparan sulfate, but not with other glycosaminoglycans. Monovalent antibodies against RP inhibit RP-cell adhesion as well as adheron-cell interactions. The RP protein is found in neural retina, but not in other tissues such as brain and muscle. These data suggest that RP plays a role in both the survival and adhesive interactions of neural retina cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fawaz Abomaray ◽  
Sebastian Gidlöf ◽  
Bartosz Bezubik ◽  
Mikael Engman ◽  
Cecilia Götherström

Endometriosis is an inflammatory disease marked by ectopic growth of endometrial cells. Mesenchymal stromal cells (MSC) have immunosuppressive properties that have been suggested as a treatment for inflammatory diseases. Therefore, the aim herein was to examine effects of allogeneic MSC on endometriosis-derived cellsin vitroas a potential therapy for endometriosis. MSC from allogeneic adipose tissue (Ad-MSC) and stromal cells from endometrium (ESCendo) and endometriotic ovarian cysts (ESCcyst) from women with endometriosis were isolated. The effects of Ad-MSC on ESCendoand ESCcystwere investigated usingin vitroproliferation, apoptosis, adhesion, tube formation, migration, and invasion assays. Ad-MSC significantly increased proliferation of ESC compared to untreated controls. Moreover, Ad-MSC significantly decreased apoptosis and increased survival of ESC. Ad-MSC significantly increased adhesion of ESCendoand not ESCcyston fibronectin. Conditioned medium from cocultures of Ad-MSC and ESC significantly increased tube formation of human umbilical vein endothelial cells on matrigel. Ad-MSC may significantly increase migration of ESCcystand did not increase invasion of both cell types. The data suggest that allogeneic Ad-MSC should not be considered as a potential therapy for endometriosis, because they may support the pathology by maintaining and increasing growth of ectopic endometrial tissue.


2004 ◽  
Vol 10 (24) ◽  
pp. 8250-8265 ◽  
Author(s):  
Florence Lefranc ◽  
Tatjana Mijatovic ◽  
Véronique Mathieu ◽  
Sandrine Rorive ◽  
Christine Decaestecker ◽  
...  

2009 ◽  
Vol 17 (2) ◽  
pp. 42-45 ◽  
Author(s):  
Natalie Bauer ◽  
Jyoti Rai ◽  
Hairu Chen ◽  
Lillianne Harris ◽  
Lalita Shevde ◽  
...  

Microparticles and exosomes are small vesicular fragments of cell membrane which are released from activated and apoptotic cells. Microparticles (MPs) range in size from 0.5-1.5 μm, and exosomes are 0.5 μm and under. For the purposes of this article we will refer to both categories as microparticles. They differ from apoptotic bodies based on their smaller size, intact structure, and lack of degraded nuclear material. MPs have been shown to be released from a variety of cell types including platelets, endothelium, vascular smooth muscle cells, dendritic cells, and tumor cells. Jimenez and others have shown that based on the stimulus and cell type the MPs released are both quantitatively and phenotypically distinct. More recent data have shown the proteomics of MPs released from human umbilical vein endothelial cells differ dependent on whether they are stimulated with PAI or TNF-α.


1985 ◽  
Vol 230 (2) ◽  
pp. 503-507 ◽  
Author(s):  
J D Pearson ◽  
S B Coade ◽  
N J Cusack

We compared the properties of the ectonucleotidases (nucleoside triphosphatase, EC 3.6.1.15; nucleoside diphosphatase, EC 3.6.1.6; 5′-nucleotidase, EC 3.1.3.5) in intact pig aortic smooth-muscle cells in culture with the properties that we previously investigated for ectonucleotidases of aortic endothelial cells [Cusack, Pearson & Gordon (1983) Biochem. J. 214, 975-981]. In experiments with nucleotide phosphorothioate diastereoisomers, stereoselective catabolism of adenosine 5′-[β-thio]triphosphate, but not of adenosine 5′-[α-thio]triphosphate, by the triphosphatase and stereoselective catabolism of adenosine 5′-[α-thio]diphosphate by the diphosphatase were found, as occurs in endothelial cells. In contrast with endothelial ecto-5′-nucleotidase, the smooth-muscle-cell enzyme catabolized adenosine 5′-monophosphorothioate (AMPS) to adenosine: the affinity of the enzyme for AMPS was greater than for AMP, and Vmax for AMPS was about one-sixth that for AMP. In both cell types AMPS was an apparently competitive inhibitor of AMP catabolism by 5′-nucleotidase. The relative rates of catabolism of nucleotide enantiomers in which the natural D-ribofuranosyl moiety is replaced by an L-ribofuranosyl moiety were similar to those in endothelial cells. No ectopyrophosphatase activity was detected in smooth-muscle cells, in contrast with endothelial cells, where modest activity is present.


Diseases ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 19
Author(s):  
Jörg Ukkat ◽  
Cuong Hoang-Vu ◽  
Bogusz Trojanowicz ◽  
Artur Rebelo

Introduction: Calcification is a highly relevant process in terms of development of cardiovascular diseases, and its prevention may be the key to prevent disease progression in patients. In this study we investigated the expression of osteocalcin (OC), osteopontin (OPN) and RUNX2 in patients’ leukocytes and their possible role as diagnostic markers for cardiovascular diseases. Materials and Methods: Leucocytes from 38 patients were collected in the Department of Surgery of Martin-Luther-University Halle, including 8 patients without arteriosclerotic disease (PAD−) and 30 patients with symptomatic arteriosclerotic disease (PAD+). Patients’ leucocytes, in vitro calcified human umbilical vein endothelial cells (HUVEC) and vascular smooth muscle cells (VSMC) were subjected to qPCR analyses with TaqMan probes, which are specific for OC, OPN and RUNX2. Additionally, the interaction between monocytes and calcified HUVEC and VSMC was investigated in adhesion assays. Results: The leucocytes obtained from patients with symptomatic arteriosclerotic disease (PAD+) demonstrated decreased mRNA level expression of Osteocalcin, while OPN and RUNX2 were significantly upregulated in comparison to asymptomatic patients. The induction of calcification in HUVEC and VSMC cells led to an increased expression of OC, OPN and RUNX2. Immunocytochemistry of calcified HUVEC and VSMC revealed stronger expression of OC, OPN and RUNX2 in calcified cells. Conclusion: To conclude, these data demonstrate that symptomatic arteriosclerotic disease has a correlation with OC, OPN and RUNX2. The biological rationale of OC, OPN and RUNX-2 remains not yet entirely understood for atherosclerotic disease, which means it needs further investigation.


1998 ◽  
Vol 332 (1) ◽  
pp. 213-221 ◽  
Author(s):  
P. Andrew OUTINEN ◽  
Sudesh K. SOOD ◽  
Patricia C. Y. LIAW ◽  
Kevin D. SARGE ◽  
Nobuyo MAEDA ◽  
...  

The mechanism by which homocysteine causes endothelial cell (EC) injury and/or dysfunction is not fully understood. To examine the stress-inducing effects of homocysteine on ECs, mRNA differential display and cDNA microarrays were used to evaluate changes in gene expression in cultured human umbilical-vein endothelial cells (HUVEC) exposed to homocysteine. Here we show that homocysteine increases the expression of GRP78 and GADD153, stress-response genes induced by agents or conditions that adversely affect the function of the endoplasmic reticulum (ER). Induction of GRP78 was specific for homocysteine because other thiol-containing amino acids, heat shock or H2O2 did not appreciably increase GRP78 mRNA levels. Homocysteine failed to elicit an oxidative stress response in HUVEC because it had no effect on the expression of heat shock proteins (HSPs) including HSP70, nor did it activate heat shock transcription factor 1. Furthermore homocysteine blocked the H2O2-induced expression of HSP70. In support of our findings in vitro, steady-state mRNA levels of GRP78, but not HSP70, were elevated in the livers of cystathionine β-synthase-deficient mice with hyperhomocysteinaemia. These studies indicate that the activation of stress response genes by homocysteine involves reductive stress leading to altered ER function and is in contrast with that of most other EC perturbants. The observation that homocysteine also decreases the expression of the antioxidant enzymes glutathione peroxidase and natural killer-enhancing factor B suggests that homocysteine could potentially enhance the cytotoxic effect of agents or conditions known to cause oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document