scholarly journals The influence of Deposition Temperature on the Properties of Chemically Sprayed Nanostructured Cu2CdSnS4 Thin Films

Author(s):  
Hiba J. Ahmed ◽  
Asaad A. Kamil ◽  
Ammar A. Habeeb ◽  
Nabeel A. Bakr

In this study, Cu2CdSnS4 thin films were deposited on glass substrates at fixed concentrations: 0.02 M of (CuCl2.2H2O), 0.08 M of CS (NH2)2 and 0.01 M of both SnCl2.2H2O and (CdCl2.2H2O) using Chemical Spray Pyrolysis (CSP) technique at different deposition temperatures (300, 350, 400 and 450) °C. The thickness of all samples were (300 ± 10) nm. X-ray diffraction patterns showed that all films have a tetragonal structure with a preferred orientation of (112). The maximum value of the crystallite size was 8.09 nm at 400 °C deposition temperature. Raman spectra analysis confirmed the purity of the film peaks located at (332-333). The FESEM micrographs showed that the nanostructures appeared in the form of cauliflower. The highest average grain size was 62.8 nm for the film deposited at 300 °C substrate temperature. The optical properties of all films were studied by recording the transmittance and absorbance in the wavelength range (400-900) nm. The results showed that absorption occurs in the visible and ultraviolet regions. Through the Tauc’s equation, the optical energy gap was calculated for the allowed direct transition. Its value was in the range (1.59-1.40) eV. Therefore, these films are suitable for use in solar cell applications. Hall effect results showed that Cu2CdSnS4 thin films are p-type and the highest conductivity was 0.288 (Ω.cm)-1 at 400 ˚C corresponding to the maximum mobility value and the highest charge concentration.

2021 ◽  
Author(s):  
I M El radaf ◽  
H.Y.S Al-Zahrani

Abstract In this research work, thin films of BiSbS3 have been successfully synthesized onto well cleaned soda-lima glass substrates via the chemical bath deposition procedure at different thicknesses (t= 159, 243, 296 and 362 nm). The X-ray diffraction patterns of the chemically deposited BiSbS3 films depicted that the synthesized films exposed polycrystalline nature and have an orthorhombic structure. The structural parameters of the chemically deposited BiSbS3 films were evaluated by Debye-Scherer’s formulas. The surface morphologies of the BiSbS3 films were fixed via the field-emission-scanning-electron microscope. The analyses of the linear optical parameters of the chemically deposited BiSbS3 thin films refer to improving the values of the absorption coefficient, α and the linear refractive index, n via the increase in the film thickness. In addition, there is an observed reduction in the energy gap, Eg values from 1.38 to 1.22 eV occurred by raising the film thickness. Furthermore, there is an enhancement in the nonlinear optical constants and the optoelectrical parameters occurred by raising the film thickness where the nonlinear refractive index, \({n}_{2},\)the optical free carrier concentration, \({N}_{opt}\) and the optical conductivity σopt were enlarged with increasing the values of film thickness. Moreover, the hot probe procedure was applied to the BiSbS3 thin films and this method demonstrated that the chemically deposited BiSbS3 films are p-type semiconductors.


Author(s):  
Muneer H. Jadduaa ◽  
Zainab Ali Harbi ◽  
Nadir F. Habubi

Thin films of CdO were prepared by chemical spray pyrolysis (CSP) . The effect of different temperature substrate (300,350,400,450 and 500) °C on some optical parameters has been studied . The transmittance and the optical energy gap were increased from (2.503-2.589) eV ,on the contrary of the rest parameters such as refractive index , real and imaginary parts of dielectric constant and Urbach energy which they were decreased as the substrate temperature increase.


2019 ◽  
Vol 14 (29) ◽  
pp. 1-7
Author(s):  
Farah Q. Kamil

PbxCd1-xSe compound with different Pb percentage (i.e. X=0,0.025, 0.050, 0.075, and 0.1) were prepared successfully. Thin filmswere deposited by thermal evaporation on glass substrates at filmthickness (126) nm. The optical measurements indicated thatPbxCd1-xSe films have direct optical energy gap. The value of theenergy gap decreases with the increase of Pb content from 1.78 eV to1.49 eV.


2020 ◽  
pp. 44-52
Author(s):  
Ahmed Ahmed S. Abed ◽  
Sattar J. Kasim ◽  
Abbas F. Abbas

In the present study, the microwave heating method was used to prepare cadmium sulfide quantum dots CdSQDs films. CdS nanoparticles size average obtained as (7nm). The morphology, structure and composition of prepared CdSQDs were examined using (FE-SEM), (XRD) and (EDX). Optical properties of CdSQDs thin films formed and deposited onto glass substrates have been studied at room temperature using UV/ Visible spectrophotometer within the wavelength of (300-800nm), and Photoluminescence (PL) spectrum. The optical energy gap (Eg) which estimated using Tauc relation was equal (2.6eV). Prepared CdS nanoparticles thin films are free from cracks, pinholes and have high adhesion to substrate.


2008 ◽  
Vol 22 (14) ◽  
pp. 2275-2283 ◽  
Author(s):  
WEIDONG CHEN ◽  
LIANGHUAN FENG ◽  
ZHI LEI ◽  
JINGQUAN ZHANG ◽  
FEFE YAO ◽  
...  

Aluminum antimonide (AlSb) is thought to be a potential material for high efficiency solar cells. In this paper, AlSb thin films have been fabricated by DC magnetron sputtering on glass substrates. The sputtering target consists of aluminum and antimony, and the area ratio of Al to Sb is 7:3, which is derived from research into the relationship between the deposition rates of both the metals and sputtering power. XRD and AFM measurements show that the as-deposited films are amorphous, but become polycrystalline with an average grain size of about 20 nm after annealing in an argon atmosphere. From optical absorption measurements of annealed AlSb films, a band gap of 1.56 eV has been demonstrated. Hall measurements show that the films are p-type semiconductors. The temperature dependence of dark conductivity tested in vacuum displays a linear lnσ to 1/T curve, which indicates a conductivity activation energy of around 0.61 eV.


Author(s):  
Ali M. Mousa ◽  
Karem H. Jawad

Deposition of polycrystalline Lead sulfide nanothin films onto Si and glass substrates at temperatures (200-300 °C) was carried out by chemical spraying route using optimized preparative conditions. The XRD pattern confirmed the formation of PbS semiconducting films with orthorhombic structure. The electrical and optical properties of the nanocrystalline thin films were studied aiming to better understanding for the electrical and opto-electrical properties of a hetrojunction with p-type Si. It was found that, the average grain size of PbS in the films was between 4 nm and 7 nm. The band gap was also calculated from the absorption co-efficient curves and showed a blue shift due to the grain size of the nanoPbS in the films. The current-voltage (I-V) and photoresponse characteristics were obtained with different illumination intensities. The detector exhibits an evident wide-range spectral responsivity


Author(s):  
Mohammad Ghaffar Faraj

Lead sulfide (PbS) thin films of different molarities (0.05 M, 0.075 M and 0.1 M) were prepared on glass substrates at 325 °C by chemical spray pyrolysis (CSP) technique. X-ray diffraction patterns confirm the proper phase formation of the PbS. The X-ray diffraction patterns’ results reveal that the all of PbS films have a face centered cubic structure with preferential reflection of (200) plane. The crystallite grain size was calculated using Scherrer formula and it is found that the 0.1M has maximum crystallite grain size (37.4 nm). Depending on the molarity, Hall measurement showed that the electrical resistivity and mobility at room temperature varied in the range 6.3x103Ω.cm to 2.1x103Ω.cm and 4.79cm2/V.S to 24.3 cm2/V.S.


Author(s):  
Islam M El radaf ◽  
Hnan Y Alzahrani

Abstract We deposited CuGaSnS4 thin films on soda-lima glass substrates via a spray pyrolysis process. The X-ray diffraction of CuGaSnS4 films established the formation of an orthorhombic single phase. In addition, the structural parameters of the CuGaSnS4 films were estimated by Debye-Scherer’s formulas, which showed that an enhancement in crystallite size (D) values occurred by increasing the thickness of the investigated films. The EDAX pattern of CuGaSnS4 films confirms a stoichiometric composition. The optical results revealed that the CuGaSnS4 films possessed a direct optical energy gap (Eg). The Eg values were reduced from 1.50 to 1.38 eV with the increase in thickness. Also, there was an observed increase in the linear refractive index and the linear absorption coefficient values occurred due to the increased thickness. Finally, the optoelectrical constants of the sprayed CuGaSnS4 films such as the optical conductivity (σopt) and the optical free carrier concentration to effective mass (N_opt/m^* ) were enlarged with increasing film thickness. The nonlinear optical study showed that the increase in film thickness enhanced the nonlinear optical constants of CuGaSnS4 films. The hot-probe procedure shows that the sprayed CuGaSnS4 films expose p-type conductivity.


2016 ◽  
Vol 23 (02) ◽  
pp. 1650001 ◽  
Author(s):  
ZAKI S. KHALIFA

Crystal structure, microstructure, and optical properties of TiO2 thin films deposited on quartz substrates by metal-organic chemical vapor deposition (MOCVD) in the temperature range from 250[Formula: see text]C to 450[Formula: see text]C have been studied. The crystal structure, thickness, microstructure, and optical properties have been carried out using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), atomic force microscope (AFM), and UV-visible transmittance spectroscopy, respectively. XRD patterns show that the obtained films are pure anatase. Simultaneously, the crystal size calculated using XRD peaks, and the grain size measured by AFM decrease with the increase in deposition temperature. Moreover, the texture of the films change and roughness decrease with the increase in deposition temperature. The spectrophotometric transmittance spectra have been used to calculate the refractive index, extinction coefficient, dielectric constant, optical energy gap, and porosity of the deposited films. While the refractive index and dielectric constant decrease with the increase of deposition temperature, the porosity shows the opposite.


2021 ◽  
pp. 2204-2212
Author(s):  
Abd alhameed A. Hameed ◽  
Hamid S. AL-Jumaili

      An NH3 gas sensor was prepared from nanocomposite films of indium oxide-copper oxide mixtures with ratios of 0 , 10 , and 20 Vol % of copper oxide. The films were deposited on a glass substrate using chemical spray pyrolysis method (CSP) at 400oC. The structural properties were studied by using X-ray diffraction (XRD) and atomic force microscopy ( AFM). The structural results showed that the prepared thin films are polycrystalline, with nano grain size. By mixing copper oxide with indium oxide, the grain size of the prepared thin films was decreased and the surface roughness was increased. The UV-Visible spectrometer analysis showed that the prepared thin films have high transmittance. This transmittance was decreased by mixing copper oxide with indium oxide. The direct optical energy gap ranged 3.5 - 3 eV, which was decreased with increasing copper oxide concentration. The sensitivity of the prepared gas sensor was measured towards NH3 gas at a concentration of 71ppm with operating temperatures of 100, 150, 200, 250 and 30) oC, according to the change of sensor resistance. This sensitivity of the mixture oxides showed a value of about nine times greater than that of individual indium oxide thin films. The results of the optimum gas sensor properties demonstrated a sensitivity value of 75.06%, response time of 10s, and recovery time of 11 s, at a mixing ratio of 20% of copper oxide and an operating temperature of 200oC.


Sign in / Sign up

Export Citation Format

Share Document