scholarly journals Characterization of the Corona Discharge Treated Cotton Subsequently Applied With Biodegradable Cationic Softener

Author(s):  
Abdul Malik Rehan ◽  
Zamir Ahmed Abro ◽  
Muhammad Ali Zeeshan ◽  
Ahmer Hussain Shah ◽  
Syed Qutaba Bin Tariq

Abstract In this paper, cotton fabric processed with Corona and different amounts of biodegradable cationic softener are studied. Properties such as bending length, water absorption time, and crease recovery angle are therefore measured. By increasing the amount of cationic softener, bending length is observed to be decreased and time for water absorption and crease recovery angle of the sample increased. Scanning Electron Microscopy (SEM) is carried out for the investigation of surface morphology and the micrographs revealed cracking or etching effect on the cotton fabric treated with Corona. However, Attenuated Total Reflection- Fourier Transform Infrared Spectroscopy (ATR-FTIR) analysis confirmed the chemical change on the surface of the Corona treated cotton fabric which is due to the increase of hydrophilic groups. The results also indicated that the presence of the cationic softener on the Corona treated cotton fabric improved the hydrophobicity. The judgments are in close agreement with the findings of water absorption time, bending length, and crease recovery angle.

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2501
Author(s):  
Dmitry S. Volkov ◽  
Petr K. Krivoshein ◽  
Mikhail A. Proskurnin

The qualitative analysis of nanodiamonds by FTIR spectrometry as photoacoustic (FTIR–PAS), diffuse-reflectance (DRIFT), and attenuated total reflection (ATR) modalities was evaluated for rapid and nondestructive analysis and comparison of nanodiamonds. The reproducibility and signal-gathering depth of spectra was compared. The assignment of characteristic bands showed that only six groups of bands were present in spectra of all the modalities with appropriate sensitivity: 1760 (C=O stretch, isolated carboxyl groups); 1640–1632 (H–O–H bend, liquid water); 1400–1370 (non-carboxyl C–O–H in-plane bend and CH2 deformation); 1103 (non-carboxyl C–O stretch); 1060 (in-plane C–H bend, non-aromatic hydrocarbons and carbohydrates); 940 cm−1 (out-of-plane carboxyl C–O–H bend). DRIFT provides the maximum number of bands and is capable of measuring hydrogen-bonded bands and CHx groups. ATR provides the good sensitivity for water and C–H/C–C bands in the range 2000–400 cm−1. FTIR–PAS reveals less bands than DRIFT but more intense bands than ATR–FTIR and shows the maximum sensitivity for absorption bands that do not appear in ATR-IR spectra and are expedient for supporting either DRIFT or FTIR–PAS along with depth-profiling. Thus, all three modalities are required for the full characterization of nanodiamonds surface functional groups.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Fisaha Asmelash ◽  
Million Ayele

This paper aims at the extraction and application of eco- and user-friendly natural gum obtained from Commiphora Africana tree. The result obtained is also compared with fabric treated with a commercial softener of the same concentration. The gum was extracted by puncturing the stem of the plant and the extracted gum was applied directly to 100% cotton fabric through a padding process with different concentrations of extracted gum (i.e., 20 gram per litre (g/l), 25 g/l, and 30 g/l). Another similar fabric sample was treated with a silicon softener of the same concentration. The fabric samples treated with both natural gum and silicon softener were tested for their stiffness, crease recovery, and drapability. The results show that the change in fabric softness depends on the concentration of softener used in both cases. As the concentration of the softener increased, there was a decrease in bending length and drape coefficient for both fabric samples. The drape coefficient of fabric sample treated with natural gum has a comparable result with fabric treated with silicon/commercial softener. Maximum increases in recovery angle were seen in fabric treated with natural gum at a concentration of 30 g/l.


Minerals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 663 ◽  
Author(s):  
Scrivano ◽  
Gaggero ◽  
Volpe

Fifty-four pieces out of 356 marble pieces deriving from the decorative and architectonic apparatus of the medieval monastic complex of S. Francesco of Castelletto (Genoa, Italy) preserve traces of varicolored paint layers. Microscopic samples of green, blue, red, pink, white, and yellow paint relics were collected by scalpel and analyzed by means of Scanning Electron Microscope coupled with Energy Dispersive Spectroscopy (SEM-EDS), µ-Raman, and Fourier Transform Infra-Red Spectroscopy with Attenuated Total Reflection (FTIR-ATR), to characterize pigments and binders. The combined results from the different techniques allowed verification that stone decoration in Genoa during the Middle Ages encompassed a calcite groundwork and the use of a mixture of oils and proteins (probably egg) to apply pigments. The assemblage of impurities within the pigment has been correlated with the provenance sites along the commercial continental (Hungary and France) and maritime (Sardinia, Cyprus, or Veneto) routes between the 13th and 15th centuries. Moreover, the investigation of the painted layer improved the characterization of the decorative techniques in use in Genoa during the Middle Ages.


Sign in / Sign up

Export Citation Format

Share Document