Western Blot Analysis of the Exotoxin Components From Bacillus anthracis Separated by Isoelectric Focusing Gel Electrophoresis

2004 ◽  
Author(s):  
Stephen F. Little
Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 984-984
Author(s):  
Guang Fan ◽  
Yanping Zhong ◽  
Cristina Smith ◽  
James Huang ◽  
Rita Braziel

Abstract Background: Follicular lymphoma (FL) undergoes transformation to a high grade diffuse large B-cell lymphoma (tr-DLBCL) in about 50% of patients. During transformation, a more virulent subclone of tumor cells emerges, leading to a rapidly progressive clinical course and resistance to therapy. The identification of proteins involved in transformation is critical for understanding the mechanism of transformation and developing molecularly targeted therapy. In this study, we compared protein expression between grade 1- FL (G1-FL) and tr-DLBCL using 2D-gel electrophoresis and Western blot analysis. Design: Frozen tissue and frozen cells were obtained from the Department of Pathology, Oregon Health and Science University tumor bank. The protein expression profiles of 3 G1-FL and 3 tr-DLBCL were compared using 2D-gel electrophoresis. Protein identification was done using a MALDI mass spectrometer. Frozen cells of an additional 11 non-paired GI-FL and 11 non-paired tr-DLBCL, and 2 pairs of G1-FL and tr-DLBCL specimens were used for Western blot confirmation of the initial 2D-gel findings. Results: 2D-gel analysis and MALDI protein identification revealed 14 differentially expressed proteins between G1-FL and tr-DLBCL (figure 1), all of which are known to play important roles in cellular energy/metabolic pathways, signal transduction pathways, and protein and nuclear synthesis. The two most differentially expressed proteins on 2D-gel analysis were superoxide dismutase (MnSOD2) and growth factor receptor bound protein 2 (Grb2). Western blot analysis of MnSOD2 and Grb2 confirmed their relative over- or under-expression in frozen cells from multiple additional clinical lymphoma samples, including 2 paired- and 22 non-paired G1-FL and tr-DLBCL. Both 2D-gel analysis and Western Blot showed a significantly higher level of expression of MnSOD2 and a lower expression of Grb2 expression in tr-DLBCL (figure 2). Summary: Using proteomic profiling, confirmed by Western blot analysis of clinical G1-FL and tr-DLBCL samples, we have confirmed 2 proteins (MnSOD2 and Grb2) that are expressed at significantly different levels in G1-FL and DLBCL. MnSOD2 is capable of protecting cells from reactive oxygen species and regulating signal transduction pathways to influence cell growth and apoptosis. Inhibition of MnSOD2 has been shown in studies of several cancer cell lines to render cancer cells more susceptible to apoptosis. Grb2 is a member of a critical signaling pathway leading to Ras activation in hematopoietic cells. Both proteins may play a critical role in FL transformation. These proteins have the potential to be therapeutic drug targets, diagnostic and/or prognostic markers, or biomarkers for monitoring therapeutic response. Summary of Differentially Expressed Spots Summary of Differentially Expressed Spots Figure Figure


Author(s):  
Rike Oktarianti ◽  
Rochmatul Nuryu Khasanah ◽  
Syubbanul Wathon ◽  
Kartika Senjarini

BackgroundDengue virus is transmitted by several species of Aedes mosquitoes, with Aedes albopictus as secondary vector. During blood feeding, these vectors inject saliva into the vertebrate hosts. The saliva contains anticoagulant, anti-inflammatory and immunogenic factors. The objective of this research was to detect immunogenic proteins from Ae.albopictus salivary glands reacting with sera of people living in dengue endemic areas. MethodsThe identification of immunogenic proteins of Ae. albopictus salivary gland used one-dimensional gel electrophoresis (sodium dodecyl sulfate polyacrylamide gel electrophoresis), and western blot analysis, respectively. To determine the immunogenic nature of the candidate proteins, the antigens from the salivary gland of Ae. albopictus were reacted with sera from healthy persons, dengue hemorrhagic fever (DHF) patients, and neonates, each of the groups comprising 10 samples. ResultsThe protein profiles of Ae. albopictus salivary glands showed 13 bands with molecular weights from 16 kDa up to 97 kDa, i.e. 16, 17, 26, 28, 31, 32, 45, 55, 60, 67, 73, 76, and 97 kDa. According to western blot analysis result, the 31 kDa proteins were recognized in all endemic population sera, both in DHF patients and healthy persons. In contrast, protein bands of 47 and 67 kDa were only recognized by the sera of DHF patients. ConclusionThree immunogenic proteins of 31, 47 and 67 kDa were detected from Ae. albopictus salivary glands. These immunogenic proteins may be developed as candidate biomarkers for bite exposure to Ae. albopictus and as vector-based DHF vaccines.


2010 ◽  
Vol 113 (Special_Supplement) ◽  
pp. 228-235 ◽  
Author(s):  
Qiang Jia ◽  
Yanhe Li ◽  
Desheng Xu ◽  
Zhenjiang Li ◽  
Zhiyuan Zhang ◽  
...  

Object The authors sought to evaluate modification of the radiation response of C6 glioma cells in vitro and in vivo by inhibiting the expression of Ku70. To do so they investigated the effect of gene transfer involving a recombinant replication-defective adenovirus containing Ku70 short hairpin RNA (Ad-Ku70shRNA) combined with Gamma Knife treatment (GKT). Methods First, Ad-Ku70shRNA was transfected into C6 glioma cells and the expression of Ku70 was measured using Western blot analysis. In vitro, phenotypical changes in C6 cells, including proliferation, cell cycle modification, invasion ability, and apoptosis were evaluated using the MTT (3′(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) assay, Western blot analysis, and cell flow cytometry. In vivo, parental C6 cells transfected with Ad-Ku70shRNA were implanted stereotactically into the right caudate nucleus in Sprague-Dawley rats. After GKS, apoptosis was analyzed using the TUNEL (terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling) method. The inhibitory effects on growth and invasion that were induced by expression of proliferating cell nuclear antigen and matrix metalloproteinase–9 were determined using immunohistochemical analyses. Results The expression of Ku70 was clearly inhibited in C6 cells after transfection with Ad-Ku70shRNA. In vitro following transfection, the C6 cells showed improved responses to GKT, including suppression of proliferation and invasion as well as an increased apoptosis index. In vivo following transfection of Ad-Ku70shRNA, the therapeutic efficacy of GKT in rats with C6 gliomas was greatly enhanced and survival times in these animals were prolonged. Conclusions Our data support the potential for downregulation of Ku70 expression in enhancing the radiosensitivity of gliomas. The findings of our study indicate that targeted gene therapy–mediated inactivation of Ku70 may represent a promising strategy in improving the radioresponsiveness of gliomas to GKT.


2020 ◽  
Vol 20 (23) ◽  
pp. 2070-2079
Author(s):  
Srimadhavi Ravi ◽  
Sugata Barui ◽  
Sivapriya Kirubakaran ◽  
Parul Duhan ◽  
Kaushik Bhowmik

Background: The importance of inhibiting the kinases of the DDR pathway for radiosensitizing cancer cells is well established. Cancer cells exploit these kinases for their survival, which leads to the development of resistance towards DNA damaging therapeutics. Objective: In this article, the focus is on targeting the key mediator of the DDR pathway, the ATM kinase. A new set of quinoline-3-carboxamides, as potential inhibitors of ATM, is reported. Methods: Quinoline-3-carboxamide derivatives were synthesized and cytotoxicity assay was performed to analyze the effect of molecules on different cancer cell lines like HCT116, MDA-MB-468, and MDA-MB-231. Results: Three of the synthesized compounds showed promising cytotoxicity towards a selected set of cancer cell lines. Western Blot analysis was also performed by pre-treating the cells with quercetin, a known ATM upregulator, by causing DNA double-strand breaks. SAR studies suggested the importance of the electron-donating nature of the R group for the molecule to be toxic. Finally, Western-Blot analysis confirmed the down-regulation of ATM in the cells. Additionally, the PTEN negative cell line, MDA-MB-468, was more sensitive towards the compounds in comparison with the PTEN positive cell line, MDA-MB-231. Cytotoxicity studies against 293T cells showed that the compounds were at least three times less toxic when compared with HCT116. Conclusion: In conclusion, these experiments will lay the groundwork for the evolution of potent and selective ATM inhibitors for the radio- and chemo-sensitization of cancer cells.


2020 ◽  
Vol 20 (9) ◽  
pp. 1147-1156
Author(s):  
Hanrui Li ◽  
GeTao Du ◽  
Lu Yang ◽  
Liaojun Pang ◽  
Yonghua Zhan

Background: Hepatocellular carcinoma is cancer with many new cases and the highest mortality rate. Chemotherapy is the most commonly used method for the clinical treatment of hepatocellular carcinoma. Natural products have become clinically important chemotherapeutic drugs due to their great potential for pharmacological development. Many sesquiterpene lactone compounds have been proven to have antitumor effects on hepatocellular carcinoma. Objective: Britanin is a sesquiterpene lactone compound that can be considered for the treatment of hepatocellular carcinoma. The present study aimed to investigate the antitumor effect of britanin. Methods: BEL 7402 and HepG2 cells were used to study the cytotoxicity and antitumor effects of britanin. Preliminary studies on the nuclear factor kappa B pathway were conducted by western blot analysis. A BEL 7402-luc subcutaneous tumor model was established for the in vivo antitumor studies of britanin. In vivo bioluminescence imaging was conducted to monitor changes in tumor size. Results: The results of the cytotoxicity analysis showed that the IC50 values for britanin in BEL 7402 and HepG2 cells were 2.702μM and 6.006μM, respectively. The results of the colony formation demonstrated that the number of cells in a colony was reduced significantly after britanin treatment. And the results of transwell migration assays showed that the migration ability of tumor cells was significantly weakened after treatment with britanin. Tumor size measurements and staining results showed that tumor size was inhibited after britanin treatment. The western blot analysis results showed the inhibition of p65 protein expression and reduced the ratio of Bcl-2/Bax after treatment. Conclusion: A series of in vitro and in vivo experiments demonstrated that britanin had good antitumor effects and provided an option for hepatocellular carcinoma treatment.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2794 ◽  
Author(s):  
Cao ◽  
Chen ◽  
Ren ◽  
Zhang ◽  
Tan ◽  
...  

Punicalagin, a hydrolysable tannin of pomegranate juice, exhibits multiple biological effects, including inhibiting production of pro-inflammatory cytokines in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In this study, we investigated the anti-inflammatory potential of punicalagin in lipopolysaccharide (LPS) induced RAW264.7 macrophages and uncovered the underlying mechanisms. Punicalagin significantly attenuated, in a concentration-dependent manner, LPS-induced release of NO and decreased pro-inflammatory cytokines TNF-α and IL-6 release at the highest concentration. We found that punicalagin inhibited NF-κB and MAPK activation in LPS-induced RAW264.7 macrophages. Western blot analysis revealed that punicalagin pre-treatment enhanced LC3II, p62 expression, and decreased Beclin1 expression in LPS-induced macrophages. MDC assays were used to determine the autophagic process and the results worked in concert with Western blot analysis. In addition, our observations indicated that LPS-induced releases of NO, TNF-α, and IL-6 were attenuated by treatment with autophagy inhibitor chloroquine, suggesting that autophagy inhibition participated in anti-inflammatory effect. We also found that punicalagin downregulated FoxO3a expression, resulting in autophagy inhibition. Overall these results suggested that punicalagin played an important role in the attenuation of LPS-induced inflammatory responses in RAW264.7 macrophages and that the mechanisms involved downregulation of the FoxO3a/autophagy signaling pathway.


2021 ◽  
Vol 2 (2) ◽  
pp. 100566
Author(s):  
Bikram Datt Pant ◽  
Sunhee Oh ◽  
Kirankumar S. Mysore

2021 ◽  
pp. 096032712110061
Author(s):  
D Cao ◽  
L Chu ◽  
Z Xu ◽  
J Gong ◽  
R Deng ◽  
...  

Background: Visfatin acts as an oncogenic factor in numerous tumors through a variety of cellular processes. Visfatin has been revealed to promote cell migration and invasion in gastric cancer (GC). Snai1 is a well-known regulator of EMT process in cancers. However, the relationship between visfatin and snai1 in GC remains unclear. The current study aimed to explore the role of visfatin in GC. Methods: The RT-qPCR and western blot analysis were used to measure RNA and protein levels, respectively. The cell migration and invasion were tested by Trans-well assays and western blot analysis. Results: Visfatin showed upregulation in GC cells. Additionally, Visfatin with increasing concentration facilitated epithelial-mesenchymal transition (EMT) process by increasing E-cadherin and reducing N-cadherin and Vimentin protein levels in GC cells. Moreover, endogenous overexpression and knockdown of visfatin promoted and inhibited migratory and invasive abilities of GC cells, respectively. Then, we found that snai1 protein level was positively regulated by visfatin in GC cells. In addition, visfatin activated the NF-κB signaling to modulate snai1 protein expression. Furthermore, the silencing of snai1 counteracted the promotive impact of visfatin on cell migration, invasion and EMT process in GC. Conclusion: Visfatin facilitates cell migration, invasion and EMT process by targeting snai1 via the NF-κB signaling, which provides a potential insight for the treatment of GC.


Sign in / Sign up

Export Citation Format

Share Document