scholarly journals Light and Temperature Govern Germination and Storage of Caladium Seed

HortScience ◽  
1990 ◽  
Vol 25 (1) ◽  
pp. 71-74 ◽  
Author(s):  
William J. Carpenter

Caladium hortulanum Birdsey cv. Candidum seed failed to germinate without light; maximum germination required daily, incandescent light of ≤4 hours. Lengthening daily lighting periods progressively reduced the days to 50% relative germination (T50) from 20 to 8, and days between 10% and 90% relative germination (T90 – T10) from 16 to 5. T50 and T90 – T10 were shortest (≈ 8 days) at 25 and 30C, while total or absolute germination percentage (G) was highest at ≈ 90%. G was 94% for seeds harvested immediately, but 75% or 38% for seeds that remained in fruits for 3 or 12 weeks after fruit abscission from the spadix. Total absolute germination was reduced from 95% to 87% when seed moisture contents declined to <14%. Seed storage for 7 days at from 10 to – 80 C-caused no reduction in G. Seeds were stored 6 months at 15C and 22%, 33%, or 52% RH without change in G, but storage at 5 or 25C and 11%, 75%, or 95% RH significantly reduced germination.

HortScience ◽  
1991 ◽  
Vol 26 (8) ◽  
pp. 1054-1057 ◽  
Author(s):  
W.J. Carpenter ◽  
G.J. Wilfret ◽  
J.A. Cornell

Gladiolus (G. grandiflorus) seed germination was light-independent, but temperature influenced the germination rate. Constant 20C promoted higher total germination (97%), fewer days (4.3) to 50% of final germination, and shorter span of days (4.8) between 10% and 90% germination than other constant temperatures, although similar results were achieved by alternating 12-h cycles of 20 to 25C. Total germination was unchanged after seed treatment for 7 days at 10 to -20C, but longer germination periods were required after treatments below -10C. Reducing seed moisture contents from 11.8% to 4.2% caused no reduction in total germination, but moisture contents below 6.6% delayed achieving 50% of final germination and extended the periods from 10% to 90% of germination. Temperature and relative humidity (RH) during storage were important in retaining seed viability, with RH having a larger effect. Smallest declines in total germination during 12 months of storage occurred at 11% and 33% RH at 15C. The statistical analysis estimated the optimum seed storage at 14C and 26% RH.


HortScience ◽  
1992 ◽  
Vol 27 (9) ◽  
pp. 993-996 ◽  
Author(s):  
William J. Carpenter ◽  
Joseph F. Boucher

Light, temperature, relative humidity (RH), and GA3 affect vinca [Catharanthus roseus (L.) G. Don] seed storage and/or germination. GA3 failed to increase the germination percentage in darkness but significantly increased the percentage in continuous light. Similarly, GA3 treatment reduced both the number of days required to achieve 50% of the final germination percentage (T50) and the span between 10% and 90% germination (T90 — T10) for seeds in light, but not in darkness. Germination percentages were maximal and about equal at 25, 30, or 35C in darkness; germination was lowest below 25C. Germination T50 and T90 — T10 required the fewest days between 25 and 35C. Reducing seed moisture from 9.9% to 3.9% increased the T50 from 2.4 to 3.0 days but failed to change germination percentages. Germination percentage declined linearly as seed storage temperatures were reduced from 5 to — 20C, whereas days to T50 increased. Seed storage for 12 months without reduction in germination percentage was possible at 5C and 11%, 33%, or 52% RH, but storage at 75% or 95% RH for periods exceeding 1 month reduced germination. Seeds stored at 33% or 52% RH required fewer days to T50 than did seeds stored at 11%, 75%, or 95% RH. Chemical name used: gibberellic acid (GA3).


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Melati Melati ◽  
Devi Rusmin

One problem for developing small white ginger (Zingiber officinale var. amarum) is theavailability of high quality rhizome seeds in right quantity and time. Seed rhizome will sproutquickly, and its quality will decreased in immature seed rhizome and in not good storage conditions.The main objective of the experiment was to study the best storage room conditions for storagerhizome seeds of small white ginger. The experiment was conducted in seed laboratory and storageroom of Research Institute for Medicinal and Aromatic Crops Bogor. The experiment wasconducted by randomized complete design with nine different storage, 3 replication and 25 sampleseach treatment. The treatments are 1) rhizome seeds storage in room temperature (control),(2)rhizome seeds storage in AC room (16–240C),(3) rhizome seed soaked in paclobutrazol 1000 ppmfor 4 hours then seeds storage in room temperature ( 4) put rhizome seeds in rack and cover bystraw, storage in room temperature (5) rhizome seed storage on straws in the greenhouse ( 6)rhizome seed storage in the greenhouse without straw ( 7) rhizome seed soaked in water during 1hour every month then dried naturally in 300C and storage in AC room (8) rhizome seed soakedin paclobutrazol 1000 ppm for 4 hour then storage in AC room ( 9) put rhizome in wood box andcover by rice straw and husk. Variables observed include moisture contents of ginger seed, lostweight of seed and germination percentage of rhizome seeds at the end of storage period. The resultof experiment indicated that the moisture content and weight rhizome seeds decrease after 2 months. After four months storage period, moisture content was still high above 80 %, exceptrhizome seeds in under ground. The rhizome seeds that store in AC room showed the bestperformance and thus, this treatment can be recommended for storage of small white gingerrhizome seeds for 4 months. The low moisture content (< 80%) of rhizome small white ginger seedswill decreased its viability.Keywords: Zingiber officinale var. amarum, seed, storage, viability


2018 ◽  
Author(s):  
Muhammad Amir Bakhtavar ◽  
Irfan Afzal ◽  
Shahzad Maqsood Ahmed Basra

AbstractSeed moisture content (SMC) is an important attribute to seed quality. Maintaining seed dryness throughout supply chain (The Dry Chain) prevents seed germination and quality losses. Ambient relative humidity (RH) and temperature affect seed moisture and thereof seed moisture isotherm. Present study was conducted to compare the moisture adsorption isotherms of wheat, maize, cotton and quinoa seeds packed in hermetic Super Bag and traditional packaging materials including paper, polypropylene (PP), jute and cloth bags. Seeds were incubated at 60, 70, 80 and 90% static RH. Nearly straight line moisture isotherms for all crop seeds were obtained in Super Bag. Seed moisture contents increased in traditional packaging materials with increasing RH. At higher level of RH, moisture contents increased slightly (1-2%) in Super Bag, whereas this increase was much higher in traditional packaging materials (≈9% higher than original SMC at 90% RH). In second study, seeds were dried to 8 and 14% initial seed moisture contents using zeolite drying beads and were stored in hermetic and traditional bags for a period of 18 months. For all crop seeds, germination was severely affected in all packaging materials both at 8 and 14% initial SMC except storage in Super Bag at 8% SMC. Wheat seed stored in Super Bag at 8% SMC almost maintained initial germination while germination of cotton, maize and quinoa seeds declined 7%, 14% and 30% respectively in Super Bag at 8% SMC. Seed storage in Super Bag can help to prevent the significant increase in seed moisture at higher RH as is evident from moisture isotherm study, thus helps to preserve quality of maize, wheat, cotton and quinoa seeds by maintaining The Dry Chain throughout the storage period.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
A. Suma ◽  
Kalyani Sreenivasan ◽  
A. K. Singh ◽  
J. Radhamani

The role of relative humidity (RH) while processing and storing seeds ofBrassicaspp. andEruca sativawas investigated by creating different levels of relative humidity, namely, 75%, 50%, 32%, and 11% using different saturated salt solutions and 1% RH using concentrated sulphuric acid. The variability in seed storage behaviour of different species ofBrassicawas also evaluated. The samples were stored at40±2°Cin sealed containers and various physiological parameters were assessed at different intervals up to three months. The seed viability and seedling vigour parameters were considerably reduced in all accessions at high relative humidity irrespective of the species. Storage at intermediate relative humidities caused minimal decline in viability. All the accessions performed better at relative humidity level of 32% maintaining seed moisture content of 3%. On analyzing the variability in storage behaviour,B. rapaandB. junceawere better performers thanB. napusandEruca sativa.


HortScience ◽  
1995 ◽  
Vol 30 (5) ◽  
pp. 1003-1006 ◽  
Author(s):  
William J. Carpenter ◽  
Eric R. Ostmark ◽  
John A. Cornell

Various combinations of temperature and moisture contents were used in evaluating the seed storage of nine genera of annual flowers. Relative humidity (RH) levels of 11%, 32%, 52%, and 75% provided wide ranges in seed moisture during storage at 5, 15, and 25C. At each temperature, total germination percentages (G) generally declined as seed moisture content increased during storage. The seed moisture range giving the highest G after 12 months of storage was determined for each temperature and plant genus. For all genera, seed moisture contents during storage increased as storage temperatures increased at constant RH levels. Moisture contents at 25C storage were 37%, 34%, 29%, and 20% higher than at 5C when RH levels were at 11%, 32%, 52%, and 75%, respectively.


1981 ◽  
Vol 23 (2) ◽  
pp. 267-280 ◽  
Author(s):  
Minoru Murata ◽  
Eric E. Roos ◽  
Takumi Tsuchiya

In order to study the genetic changes which occur during seed storage, barley (Hordeum vulgare L. 'Himalaya') seeds were subjected to artificial aging using six combinations of temperature (21 °C, 32 °C, and 38 °C) and seed moisture content (12% and 18%). With increasing time in storage, germination of the seeds was delayed and reduced. Abnormal seedlings without roots also occurred with increased storage. Higher temperature and seed moisture content induced rapid loss of germinability. At the first mitotic division in the root tips, the frequency of aberrant anaphases and of roots with aberrations increased with increased storage time. The frequencies of aberrant anaphases and of roots with aberrations were also increased by higher temperature and seed moisture content. Frequencies of aberrant anaphases and of roots with aberrations were negatively correlated with germination percentage. This indicated that the frequency of chromosomal aberrations induced by seed aging might be estimated from the germination percentages.


2020 ◽  
Vol 9 (9) ◽  
pp. e858998157
Author(s):  
Érica Coutinho David ◽  
Bressa Karolina Dias Cardoso ◽  
Josiene Amanda dos Santos Viana ◽  
Eniel David Cruz

Knowledge about seed storage behavior is important to preserve plant species. Clitoria fairchildiana R.A.Howard is an endemic species with medicinal properties, it is used in the recovery of degraded land. The objective of this study is to evaluate the effect of drying on the physiological quality of C. fairchildiana seeds. Seeds were oven dried along with silica gel for 18 days and in intervals of 2 or 3 days, samples were removed to assess the seed moisture content. This was done in an oven at 105±3 oC for 24h, using four replicates with 10 seeds each. After undergoing the above-mentioned treatment, a sample of seeds was stored in the freezer (-18 ºC) for 3 months. Sowing was carried out in plastic trays in a sand and sawdust mixture (1:1), previously sterilized in hot water (100 oC) for two hours. Seeds were left to germinate in a laboratory with no temperature and relative humidity control. Germination tests were performed over 14 days with daily counts of the number of emerged seedlings. The percentage of seed germination, abnormal seedlings and dead seeds were obtained 14 days after sowing. The experimental design was completely randomized with four replications of 25 seeds. The reduction of seed moisture content from 18.5% to 5.6% affected physiological seed quality causing a reduction in the germination percentage and an increase in dead seeds and abnormal seedling percentage. C. fairchildiana seeds are classified as intermediate and they can be desiccated up to 8.6% with no reduction in physiology quality.


2012 ◽  
Vol 34 (3) ◽  
pp. 388-396 ◽  
Author(s):  
Wilson Vicente Souza Pereira ◽  
José Márcio Rocha Faria ◽  
Olivia Alvina Oliveira Tonetti ◽  
Edvaldo Aparecido Amaral da Silva

This study was aimed at evaluating the desiccation sensitivity in seeds of the tree Tapirira obtusa (Benth.) J. D. Mitchell collected from three different environments and subjected to two distinct drying speeds. Seeds were collected from a rocky area, in the "Cerrado", and in a riparian forest area, in the region of municipality of Lavras, State of Minas Gerais. The seeds were subjected to drying with magnesium chloride (slow drying) or silica gel (fast drying), into closed environment, until moisture contents of 40%, 30%, 20% and 10%, considering as control, the percentage of germination at the initial moisture content in each environment, which varied from 47% to 50%. Percentages of germination and normal seedlings as well as germination speed index were assessed. For the three environments studied, there was no effect of slow drying on seed germination. Seeds from area of Cerrado, however, have shown a slight reduction on germination when subjected to fast drying. Oppositely, seeds from rocky area had germination increased when subjected to fast drying. Seeds from riparian forest area had no reduction on germination percentage, independent of drying speed. Results suggest that seeds of T. obtusa are not sensitive to desiccation.


2020 ◽  
Author(s):  
Peter Murithi Angaine ◽  
Stephen Muriithi Ndungú ◽  
Alice Adongo Onyango ◽  
Jesse Omondi Owino

Abstract Background: Globally, forestry faces challenges in the availability of seeds due to limited knowledge on seed handling of various species. Forestry seeds are constantly being reviewed and classified as either recalcitrant, intermediate, or orthodox based on their storage behavior. It is essential to understand the tree seed storage behavior to maintain seed viability and thus minimize seed losses. There is scanty literature combining factors of seed moisture content (6%, 9%, 12%, 15%, and 20%), seed storage temperature (20oC, 5oC and -20oC), seed storage duration (1, 4, 9 and 12 months), and germination in different sites with varying environmental variables. Ehretia cymosa is important in the Afromontane forestry landscape as a medicinal, rehabilitation, and conservation species. This study conducted desiccation and storage studies and their influence on the viability of E. cymosa seeds. The study sought to determine the optimum conditions for the storage of Ehretia cymosa that maintains viability. Results: This study observed that E. cymosa dried to seed moisture content of 6%, stored for 12 months at 20oC and sown in the laboratory had the highest germination performance (27.6 ± 3.18%) (p<0.05). Conclusion: This confirms that E.cymosa seeds exhibit orthodox storage behavior. The authors recommend longer storage studies (>12months) to determine the actual longevity of the seeds of this species. The significance of these results would be useful for foresters and farmers that would need to use this species for various purposes.


Sign in / Sign up

Export Citation Format

Share Document