scholarly journals Influence of Plant Age on Nutrient Absorption for Marigold Seedlings

HortScience ◽  
1990 ◽  
Vol 25 (12) ◽  
pp. 1612-1613 ◽  
Author(s):  
Deborah A. Tolman ◽  
Alexander X. Niemiera ◽  
Robert D. Wright

Seedlings of 30-, 35, 40-, -45, and 50-day-old marigold (Tagetes erecta Big. `Inca Gold') in 500-ml plastic pots containing a 1 peat: 1 perlite (v/v) medium were treated with several fertilizer levels (N at 20, 50, 80, and 110 mg·liter-1); solution nutrient levels in the medium were determined 6 hours later. Older/larger container-grown plants absorbed more N, P, and K from the medium solution than younger/smaller plants. Also, older plants (>40 days) absorbed at least 88% of the solution N regardless of N treatment. Nitrogen absorption, regardless of plant age, increased as N application rates increased. The latter result implies that even though total N absorption increases with plant age/size, nutrient levels in the medium solution for optimal growth and nutrient uptake may be similar regardless of plant size.

2015 ◽  
Vol 154 (4) ◽  
pp. 632-646 ◽  
Author(s):  
L. H. HUANG ◽  
Z. W. LIANG ◽  
D. L. SUAREZ ◽  
Z.C. WANG ◽  
M. M. WANG ◽  
...  

SUMMARYSaline-sodic soils are widely distributed in the western Songnen Plain of Northeast China and planting rice has been found to be an effective and feasible approach for improving saline-sodic soil and increasing food production. Assessment of the effectiveness and sustainability of this method requires monitoring of the changes in soil salinity and nutrient content. The objective of the current study was to investigate the changes of soil salinity and nitrogen (N) contents over 1, 3, 6 and 9 years of cultivation, four application rates of N (N0: no N, N1: 100 kg N/ha, N2: 200 kg N/ha and N3: 300 kg N/ha) and two irrigation water types: ground water irrigation (GWI) and river water irrigation (RWI). Salinity and N contents of soil and water samples were analysed before planting and after harvest throughout the experiments. Soil pH and electrical conductivity (EC), especially in the surface layer of 0–40 cm depth, decreased with years of cultivation with both GWI and RWI, while soil inorganic N and total N contents increased. Moreover, with increasing N application rates, soil inorganic N and total N contents increased significantly in the 0–20 cm soil layer. Increasing N application had little effect on soil pH and EC. Reclaiming and planting rice promoted desalination of the surface and formation of a fertile tillage layer in saline-sodic paddy fields. In terms of irrigation and drainage in saline-sodic paddy fields, both soil salinity and N contents increased. Soil total salinity increased annually by 34 and 12·8 kg/ha, and inorganic N contents increased annually by 9 and 13·5 kg/ha with GWI and RWI, respectively. Therefore, comprehensive agricultural practices should be adopted for improving and cropping rice in saline-sodic paddy fields.


2010 ◽  
Vol 20 (2) ◽  
pp. 389-394
Author(s):  
Timothy K. Broschat ◽  
Kimberly Anne Moore

The roots of container-grown ornamental plants primarily are concentrated within the original container substrate root ball during the establishment period following transplanting into the landscape. Plants growing in container substrates containing pine bark or peatmoss have higher nitrogen (N) requirements than in most landscape soils due to microbial immobilization of N by these organic components. However, use of high-N fertilizers, such as those used in container production of ornamentals, can cause imbalances with potassium (K) and magnesium (Mg) when used on palms in sandy landscape soils. Areca palm (Dypsis lutescens) and chinese hibiscus (Hibiscus rosa-sinensis ‘President’) that had been growing in containers were transplanted into a landscape soil to determine if high N fertilization during the establishment period could accelerate the rate of establishment without exacerbating K and Mg deficiencies. Although plants of both species had the darkest green color and largest size when continuously fertilized with high N fertilizer, this treatment did induce Mg deficiency in both species. Plant size and color for both species were highly correlated with cumulative N application rates, but also with initial N application rates, suggesting that high N fertilization during the first 6 months affected plant quality at 12 and 24 months after planting, even if high N fertilization was discontinued. However, continued use of a moderate N landscape palm maintenance fertilizer ultimately produced areca palm plants as good as those receiving high N during the establishment period.


HortScience ◽  
2006 ◽  
Vol 41 (5) ◽  
pp. 1332-1338 ◽  
Author(s):  
Sean M. Westerveld ◽  
Alan W. McKeown ◽  
Mary Ruth McDonald

An understanding of nitrogen (N) uptake and the partitioning of N during the season by the carrot crop (Daucus carota subsp. sativus [Hoffm.] Arkang.) is required to develop more efficient N fertilization practices. Experiments were conducted on both organic and mineral soils to track the accumulation of dry matter (DM) and N over the growing season and to develop an N budget of the crop. Treatments included two carrot cultivars (`Idaho' and `Fontana') and 5 N rates ranging from 0% to 200% of the provincial recommendations in Ontario. Foliage and root samples were collected biweekly from selected treatments during the growing season and assessed for total N concentration. Harvest samples were used to calculate N uptake, N in debris, and net N removal values. Accumulation of DM and N in the roots was low until 50 to 60 days after seeding (DAS) and then increased linearly until harvest for all 3 years regardless of the soil type, cultivar, and N rate. Foliage dry weight and N accumulation were more significant by 50 to 60 DAS, increased linearly between 50 and 100 DAS, and reached a maximum or declined slightly beyond 100 DAS in most cases. The N application rates required to maximize yield on mineral soil resulted in a net loss of N from the system, except when sufficient N was available from the soil to produce optimal yield. On organic soil, a net removal of N occurred at all N application rates in all years. Carrots could be used as an N catch crop to reduce N losses in a vegetable rotation in conditions of high soil residual N, thereby improving the N use efficiency (NUE) of the crop rotation.


HortScience ◽  
2015 ◽  
Vol 50 (6) ◽  
pp. 904-908 ◽  
Author(s):  
Lenny Wells

The prolonged period from tree planting to first commercial harvest of pecan [Carya illinoinensis (Wangenh.) K. Koch] provides incentive for many growers to intensively manage young trees to induce commercial production as soon as possible. This management includes high nitrogen (N) application rates with or without fertigation. However, there remains little data regarding the effect of N fertilization or fertigation on young pecan trees grown under southeastern U.S. orchard conditions. The objectives of this study were to compare the effects of fertigation with more commonly recommended forms of fertilization on growth and leaf N, phosphorous (P), potassium (K), and zinc (Zn) concentrations of first- through third-leaf pecan trees irrigated with microsprinklers. An optimal growth rate of young pecan trees was obtained as easily with a balanced granular fertilizer application using significantly less N compared with fertigation applications. The minimal treatment differences observed along with the fact that leaf N concentration never fell below the minimum recommended level in any treatment throughout the study supports the supposition that first-year pecan trees require no N fertilizer during the year of establishment. Only modest N application rates are required during the second and third growing seasons. This practice helps to promote optimal tree growth while minimizing excessive losses of N to the environment.


2008 ◽  
Vol 133 (6) ◽  
pp. 735-742 ◽  
Author(s):  
Laura Elisa Acuña-Maldonado ◽  
Marvin P. Pritts

Early spring growth of perennial strawberry (Fragaria ×ananassa Duch.) plants is supported by the carbohydrate and nitrogen (N) reserves accumulated from the previous growing season. The limitations of these reserves on the initial spring growth and yield of perennial strawberries have not been studied in detail, particularly the influence of N reserves. Differential N fertigation (0 to 20 mm N) was applied to potted strawberries during the growing season and a supplemental foliar urea application was applied to a portion of the plants in the fall to modify reserve N during dormancy. Plant N content and spring vegetative growth the year after fertigation increased nearly twofold with increasing N fertigation. Photosynthesis per unit leaf area also increased up to 10 mm of fertilizer N and then stabilized through 20 mm. Foliar urea application in fall further increased total plant N content and size, decreased carbohydrate concentration, and also decreased yield in plants with the most total N. Nitrogen fertigation was resumed on a portion of these plants in early spring, but new growth and subsequent yield were unaffected by spring N application. In a second experiment, CO2 enrichment with and without soil and foliar N application in the fall was used to vary carbon (C) and N reserves. CO2 enrichment in fall increased plant size and yield the next July by ≈20%, but total nonstructural carbohydrate and N concentrations were unaffected. Foliar urea application also increased N and C reserves (but not concentration) as well as yield in both enriched and unenriched plants. Although foliar urea in fall decreased carbohydrate concentration, total reserve levels were unaffected because treated plants were larger. In this experiment, spring N increased plant size by ≈50%, but yield was increased only 12%, suggesting that yields are mostly dependent on reserves. Increasing N reserves with a late fall foliar application is one strategy growers can use to efficiently enhance growth and yield in low to moderately fertilized plants.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 444c-444
Author(s):  
J. R. Heckman ◽  
D. J. Prostak ◽  
W. T. Hlubik

The presidedress soil nitrate test (PSNT) is an in-season soil test that evaluates the N supplying capacity of soil before side dressing to adjust N application rates. Increasing acceptance of this soil test among field corn growers in New Jersey has shown it to be an effective practice. Nitrogen application rates were reduced by an average of 45 kg-1 ha without loss of crop yield. Field calibration research to extend use of the PSNT to sweet corn has the potential to improve N fertilizer recommendations for this crop. A critical concentration of 25 mg kg-1 NO3-N in the surface 30 cm of soil is generally considered adequate for field corn. Certain crop features of sweet corn (earlier harvest, smaller plant size and population) suggested that the critical NO2-N level might be lower than for field corn while market quality suggested that it might be a higher value. Results from 40 sweet corn field calibration sites in New Jersey indicate that the PSNT critical soil NO3-N concentration may be greater for sweet corn than field corn. A preliminary critical level of 30 mg kg-1 NO3-N in the surface 30 cm of soil is suggested for use of the PSNT on sweet corn. Further research is being conducted to improve sidedress N recommendations based on the PSNT.


2000 ◽  
Vol 80 (2) ◽  
pp. 277-285 ◽  
Author(s):  
S. Bittman ◽  
C. G. Kowalenko

An orchardgrass study in which three rates of N (100, 200 and 400 kg ha−1) each distributed in 1/0/0/0, 0.75/0.25/0/0, 0.50/0.25/0.25/0 and 0.25/0.25/0.25/0.25 proportions prior to four cut intervals examined crude-protein-N and nitrate-N concentrations in grass herbage at each cut in three trials. Crude-protein-N concentration frequently increased to a greater degree and in a different pattern (based on cut) than yield as the rate of N application increased. This showed that crude-protein-N by itself cannot be used as a method for determining the N sufficiency status of grass. Both rate and distribution of fertilizer N strongly influenced plant nitrate-N concentration; the degree of change varied considerably among cuts and trials. Plant nitrate-N concentration in the control did not correspond to yield responsiveness to N application, making it a poor indicator of the plant's need for fertilizer applications. Residual effects of N applications on plant nitrate-N were noted into the last cut of the season from a single spring application. The effect of N rate and distribution, then, was a function of immediate and residual effects of the applications. There was some evidence that N present in the soil in nitrate-N form enhanced the potential for high nitrate-N in the plant. Plant nitrate-N concentrations accounted for up to 29% of the total N in the plant with concentrations greater than 4000 mg N kg−1 at the highest N application rates. Plant nitrate-N did not exceed 1000 mg N kg−1, a concentration considered safe for ruminants, when 75 kg N ha−1 or less ammonium nitrate was applied as a single application prior to a growth interval for all cuts. Since grass protein- and nitrate-N concentrations respond differently than yield to N applications, a specific combination of rate and distribution of fertilizer will not necessarily produce maximum herbage quantity and quality simultaneously. Key words: Crude-protein-N, plant nitrate-N, residual effect, split applications


1995 ◽  
Vol 43 (4) ◽  
pp. 435-446
Author(s):  
H. Biemond

Two greenhouse and 2 field trials were carried out on leeks cv. Albana with different N fertilizer rates and application dates. Observations included frequent measurements of DM and N accumulation in leaf blades, leaf sheaths and, if present, scapes. Both the amount of N applied and the time of application affected the total accumulation of DM and N in the plant. The relative partitioning rates of DM increase to the shaft were affected in such a way that the final harvest indices for DM (which ranged from 0.32 to 0.53) were significantly lower at higher N application rates. The final harvest indices for N (0.21-0.35) were not significantly affected by amount or timing of fertilizer applications. The total N concentrations of leaf blades and leaf sheaths decreased with increasing leaf age. Average nitrate N concentrations over all plant parts were always below 40%.


1995 ◽  
Vol 25 (2) ◽  
pp. 298-306 ◽  
Author(s):  
L.E. Nelson ◽  
M.G. Shelton ◽  
G.L. Switzer

Resorption of foliar nutrients during senescence is one of the principal ways by which plants enhance nutrient efficiency, particularly of N and P. The objectives of this study were to determine (i) changes in foliar characteristics attributable to N applications and (ii) resorption of nutrients during foliar senescence. Rates of 0, 100, 200, and 400 kg N/ha were applied to a 9-year-old sweetgum (Liquidambarstyraciflua L.) plantation in 1981, and resorption was determined the following three growing seasons. Preceding senescence, concentrations of foliar N were doubled, P concentrations declined, and K, Ca, and Mg concentrations were relatively unaffected by N application. Losses from foliage (resorption and (or) leaching) of N, P, K, and Mg, but not Ca, were positively related to the quantity present in the presenescent foliage. Resorption of foliar N, P, K, Ca, and Mg averaged 62, 50, 48, −19, and 12%, respectively; values significantly differed among years for all nutrients. Relative resorption was unaffected by N application rates for all nutrients except K. Results indicate that resorption is an important mechanism for nutrient conservation and efficiency, and under the conditions evaluated in this study, it was influenced more by environmental conditions (i.e., weather) than by nutrient levels.


Author(s):  
Subin Kalu ◽  
Gboyega Nathaniel Oyekoya ◽  
Per Ambus ◽  
Priit Tammeorg ◽  
Asko Simojoki ◽  
...  

AbstractA 15N tracing pot experiment was conducted using two types of wood-based biochars: a regular biochar and a Kon-Tiki-produced nutrient-enriched biochar, at two application rates (1% and 5% (w/w)), in addition to a fertilizer only and a control treatment. Ryegrass was sown in pots, all of which except controls received 15N-labelled fertilizer as either 15NH4NO3 or NH415NO3. We quantified the effect of biochar application on soil N2O emissions, as well as the fate of fertilizer-derived ammonium (NH4+) and nitrate (NO3−) in terms of their leaching from the soil, uptake into plant biomass, and recovery in the soil. We found that application of biochars reduced soil mineral N leaching and N2O emissions. Similarly, the higher biochar application rate of 5% significantly increased aboveground ryegrass biomass yield. However, no differences in N2O emissions and ryegrass biomass yields were observed between regular and nutrient-enriched biochar treatments, although mineral N leaching tended to be lower in the nutrient-enriched biochar treatment than in the regular biochar treatment. The 15N analysis revealed that biochar application increased the plant uptake of added nitrate, but reduced the plant uptake of added ammonium compared to the fertilizer only treatment. Thus, the uptake of total N derived from added NH4NO3 fertilizer was not affected by the biochar addition, and cannot explain the increase in plant biomass in biochar treatments. Instead, the increased plant biomass at the higher biochar application rate was attributed to the enhanced uptake of N derived from soil. This suggests that the interactions between biochar and native soil organic N may be important determinants of the availability of soil N to plant growth.


Sign in / Sign up

Export Citation Format

Share Document